首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 886 毫秒
1.
In developed countries, age-related macular degeneration is a common cause of blindness in the elderly. A common polymorphism, encoding the sequence variation Y402H in complement factor H (CFH), has been strongly associated with disease susceptibility. Here, we examined 84 polymorphisms in and around CFH in 726 affected individuals (including 544 unrelated individuals) and 268 unrelated controls. In this sample, 20 of these polymorphisms showed stronger association with disease susceptibility than the Y402H variant. Further, no single polymorphism could account for the contribution of the CFH locus to disease susceptibility. Instead, multiple polymorphisms defined a set of four common haplotypes (of which two were associated with disease susceptibility and two seemed to be protective) and multiple rare haplotypes (associated with increased susceptibility in aggregate). Our results suggest that there are multiple disease susceptibility alleles in the region and that noncoding CFH variants play a role in disease susceptibility.  相似文献   

2.
3.
Age-related macular degeneration (AMD) is the most common form of irreversible blindness in developed countries. Variants in the factor H gene (CFH, also known as HF1), which encodes a major inhibitor of the alternative complement pathway, are associated with the risk for developing AMD. Here we test the hypothesis that variation in genes encoding other regulatory proteins of the same pathway is associated with AMD. We screened factor B (BF) and complement component 2 (C2) genes, located in the major histocompatibility complex class III region, for genetic variation in two independent cohorts comprising approximately 900 individuals with AMD and approximately 400 matched controls. Haplotype analyses identify a statistically significant common risk haplotype (H1) and two protective haplotypes. The L9H variant of BF and the E318D variant of C2 (H10), as well as a variant in intron 10 of C2 and the R32Q variant of BF (H7), confer a significantly reduced risk of AMD (odds ratio = 0.45 and 0.36, respectively). Combined analysis of the C2 and BF haplotypes and CFH variants shows that variation in the two loci can predict the clinical outcome in 74% of the affected individuals and 56% of the controls. These data expand and refine our understanding of the genetic risk for AMD.  相似文献   

4.
Wright AF 《Nature genetics》2011,43(12):1176-1177
A careful analysis of risk haplotypes in relation to age-related macular degeneration (AMD) susceptibility has led to the identification of a rare, high-penetrance variant in the complement factor H (CFH) gene that is also causally associated with atypical hemolytic uremic syndrome (aHUS) and related glomerulopathies. This finding provides a convincing causal mechanism linking the two diseases and develops a paradigm for the genetic architecture of a common and complex disease.  相似文献   

5.
Age-related macular degeneration (AMD) is a common, late-onset disease with seemingly typical complexity: recurrence ratios for siblings of an affected individual are three- to sixfold higher than in the general population, and family-based analysis has resulted in only modestly significant evidence for linkage. In a case-control study drawn from a US-based population of European descent, we have identified a previously unrecognized common, noncoding variant in CFH, the gene encoding complement factor H, that substantially increases the influence of this locus on AMD, and we have strongly replicated the associations of four other previously reported common alleles in three genes (P values ranging from 10(-6) to 10(-70)). Despite excellent power to detect epistasis, we observed purely additive accumulation of risk from alleles at these genes. We found no differences in association of these loci with major phenotypic categories of advanced AMD. Genotypes at these five common SNPs define a broad spectrum of interindividual disease risk and explain about half of the classical sibling risk of AMD in our study population.  相似文献   

6.
7.
8.
We carried out a genome-wide association study of IgA nephropathy, a major cause of kidney failure worldwide. We studied 1,194 cases and 902 controls of Chinese Han ancestry, with targeted follow up in Chinese and European cohorts comprising 1,950 cases and 1,920 controls. We identified three independent loci in the major histocompatibility complex, as well as a common deletion of CFHR1 and CFHR3 at chromosome 1q32 and a locus at chromosome 22q12 that each surpassed genome-wide significance (P values for association between 1.59 × 10?2? and 4.84 × 10?? and minor allele odds ratios of 0.63-0.80). These five loci explain 4-7% of the disease variance and up to a tenfold variation in interindividual risk. Many of the alleles that protect against IgA nephropathy impart increased risk for other autoimmune or infectious diseases, and IgA nephropathy risk allele frequencies closely parallel the variation in disease prevalence among Asian, European and African populations, suggesting complex selective pressures.  相似文献   

9.
10.
11.
Sequence variation in the human angiotensin converting enzyme.   总被引:32,自引:0,他引:32  
Angiotensin converting enzyme (encoded by the gene DCP1, also known as ACE) catalyses the conversion of angiotensin I to the physiologically active peptide angiotensin II, which controls fluid-electrolyte balance and systemic blood pressure. Because of its key function in the renin-angiotensin system, many association studies have been performed with DCP1. Nearly all studies have associated the presence (insertion, I) or absence (deletion, D) of a 287-bp Alu repeat element in intron 16 with the levels of circulating enzyme or cardiovascular pathophysiologies. Many epidemiological studies suggest that the DCP1*D allele confers increased susceptibility to cardiovascular disease; however, other reports have found no such association or even a beneficial effect. We present here the complete genomic sequence of DCP1 from 11 individuals, representing the longest contiguous scan (24 kb) for sequence variation in human DNA. We identified 78 varying sites in 22 chromosomes that resolved into 13 distinct haplotypes. Of the variant sites, 17 were in absolute linkage disequilibrium with the commonly typed Alu insertion/deletion polymorphism, producing two distinct and distantly related clades. We also identified a major subdivision in the Alu deletion clade that enables further analysis of the traits associated with this gene. The diversity uncovered in DCP1 is comparable to that described for other regions in the human genome. The highly correlated structure in DCP1 raises important issues for the determination of functional DNA variants within genes and genetic studies in humans based on marker association.  相似文献   

12.
13.
14.
Many human Y-chromosomal deletions are thought to severely impair reproductive fitness, which precludes their transmission to the next generation and thus ensures their rarity in the population. Here we report a 1.6-Mb deletion that persists over generations and is sufficiently common to be considered a polymorphism. We hypothesized that this deletion might affect spermatogenesis because it removes almost half of the Y chromosome's AZFc region, a gene-rich segment that is critical for sperm production. An association study established that this deletion, called gr/gr, is a significant risk factor for spermatogenic failure. The gr/gr deletion has far lower penetrance with respect to spermatogenic failure than previously characterized Y-chromosomal deletions; it is often transmitted from father to son. By studying the distribution of gr/gr-deleted chromosomes across the branches of the Y chromosome's genealogical tree, we determined that this deletion arose independently at least 14 times in human history. We suggest that the existence of this deletion as a polymorphism reflects a balance between haploid selection, which culls gr/gr-deleted Y chromosomes from the population, and homologous recombination, which continues to generate new gr/gr deletions.  相似文献   

15.
The mammalian Y chromosome has unique characteristics compared with the autosomes or X chromosomes. Here we report the finished sequence of the chimpanzee Y chromosome (PTRY), including 271 kb of the Y-specific pseudoautosomal region 1 and 12.7 Mb of the male-specific region of the Y chromosome. Greater sequence divergence between the human Y chromosome (HSAY) and PTRY (1.78%) than between their respective whole genomes (1.23%) confirmed the accelerated evolutionary rate of the Y chromosome. Each of the 19 PTRY protein-coding genes analyzed had at least one nonsynonymous substitution, and 11 genes had higher nonsynonymous substitution rates than synonymous ones, suggesting relaxation of selective constraint, positive selection or both. We also identified lineage-specific changes, including deletion of a 200-kb fragment from the pericentromeric region of HSAY, expansion of young Alu families in HSAY and accumulation of young L1 elements and long terminal repeat retrotransposons in PTRY. Reconstruction of the common ancestral Y chromosome reflects the dynamic changes in our genomes in the 5-6 million years since speciation.  相似文献   

16.
Inflammatory bowel disease (IBD) is a common inflammatory disorder with complex etiology that involves both genetic and environmental triggers, including but not limited to defects in bacterial clearance, defective mucosal barrier and persistent dysregulation of the immune response to commensal intestinal bacteria. IBD is characterized by two distinct phenotypes: Crohn's disease (CD) and ulcerative colitis (UC). Previously reported GWA studies have identified genetic variation accounting for a small portion of the overall genetic susceptibility to CD and an even smaller contribution to UC pathogenesis. We hypothesized that stratification of IBD by age of onset might identify additional genes associated with IBD. To that end, we carried out a GWA analysis in a cohort of 1,011 individuals with pediatric-onset IBD and 4,250 matched controls. We identified and replicated significantly associated, previously unreported loci on chromosomes 20q13 (rs2315008[T] and rs4809330[A]; P = 6.30 x 10(-8) and 6.95 x 10(-8), respectively; odds ratio (OR) = 0.74 for both) and 21q22 (rs2836878[A]; P = 6.01 x 10(-8); OR = 0.73), located close to the TNFRSF6B and PSMG1 genes, respectively.  相似文献   

17.
18.
Endometriosis is a common gynecological disease associated with pelvic pain and subfertility. We conducted a genome-wide association study (GWAS) in 3,194 individuals with surgically confirmed endometriosis (cases) and 7,060 controls from Australia and the UK. Polygenic predictive modeling showed significantly increased genetic loading among 1,364 cases with moderate to severe endometriosis. The strongest association signal was on 7p15.2 (rs12700667) for 'all' endometriosis (P = 2.6 × 10??, odds ratio (OR) = 1.22, 95% CI 1.13-1.32) and for moderate to severe disease (P = 1.5 × 10??, OR = 1.38, 95% CI 1.24-1.53). We replicated rs12700667 in an independent cohort from the United States of 2,392 self-reported, surgically confirmed endometriosis cases and 2,271 controls (P = 1.2 × 10?3, OR = 1.17, 95% CI 1.06-1.28), resulting in a genome-wide significant P value of 1.4 × 10?? (OR = 1.20, 95% CI 1.13-1.27) for 'all' endometriosis in our combined datasets of 5,586 cases and 9,331 controls. rs12700667 is located in an intergenic region upstream of the plausible candidate genes NFE2L3 and HOXA10.  相似文献   

19.
Genomic imprinting is an epigenetic modification that results in expression from only one of the two parental copies of a gene. Differences in methylation between the two parental chromosomes are often observed at or near imprinted genes. Beckwith-Wiedemann syndrome (BWS), which predisposes to cancer and excessive growth, results from a disruption of imprinted gene expression in chromosome band 11p15.5. One third of individuals with BWS lose maternal-specific methylation at KvDMR1, a putative imprinting control region within intron 10 of the KCNQ1 gene, and it has been proposed that this epimutation results in aberrant imprinting and, consequently, BWS1, 2. Here we show that paternal inheritance of a deletion of KvDMR1 results in the de-repression in cis of six genes, including Cdkn1c, which encodes cyclin-dependent kinase inhibitor 1C. Furthermore, fetuses and adult mice that inherited the deletion from their fathers were 20-25% smaller than their wildtype littermates. By contrast, maternal inheritance of this deletion had no effect on imprinted gene expression or growth. Thus, the unmethylated paternal KvDMR1 allele regulates imprinted expression by silencing genes on the paternal chromosome. These findings support the hypothesis that loss of methylation in BWS patients activates the repressive function of KvDMR1 on the maternal chromosome, resulting in abnormal silencing of CDKN1C and the development of BWS.  相似文献   

20.
Prostate cancer is the most prevalent noncutaneous cancer in males in developed regions, with African American men having among the highest worldwide incidence and mortality rates. Here we report a second genetic variant in the 8q24 region that, in conjunction with another variant we recently discovered, accounts for about 11%-13% of prostate cancer cases in individuals of European descent and 31% of cases in African Americans. We made the current discovery through a genome-wide association scan of 1,453 affected Icelandic individuals and 3,064 controls using the Illumina HumanHap300 BeadChip followed by four replication studies. A key step in the discovery was the construction of a 14-SNP haplotype that efficiently tags a relatively uncommon (2%-4%) susceptibility variant in individuals of European descent that happens to be very common (approximately 42%) in African Americans. The newly identified variant shows a stronger association with affected individuals who have an earlier age at diagnosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号