首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
胸膜肺炎放线杆菌(Actinobacillus pleuropneumoniae,APP)是引起猪传染性胸膜肺炎疾病的病原菌,APP引起猪致病的毒力因子有多种,其中黏附素作为细菌粘附宿主的第一步中的关键作用被广泛关注.黏附是APP感染宿主的第一步,分泌到革兰氏阴性菌表面的自转运黏附索调节着细菌对宿主细胞的黏附,是重要的...  相似文献   

2.
The PI-linked receptor FcRIII is released on stimulation of neutrophils   总被引:41,自引:0,他引:41  
Human phagocytic cells express receptors for the constant (Fc) region of immunoglobulin G. Neutrophils carry Fc receptor II (FcRII; CDw32) and FcRIII (CD16) which both bind IgG-containing immune complexes, leading to phagocytosis of the complex and activation of the neutrophil. We find that patients with paroxysmal nocturnal haemoglobinuria (PNH) have only about 10% of the normal levels of FcRIII on their neutrophils, whereas the expression of FcRII is unaffected. We show that FcRIII is a phosphatidyl inositol (PI)-anchored protein in neutrophils. Analysis of FcRIII expression in cells of PNH patients, known to be deficient in PI-linked proteins, suggests FcRIII is not PI-linked in monocytes. We find that the synthesis of FcRIII in neutrophils from PNH patients appears normal, indicating that the defect lies in the PI linkage. This lipid linkage of the receptor on neutrophils suggests that its release may be important for its function, and indeed FcRIII release was observed on stimulation of neutrophils by an inflammatory bacterial peptide (f-Met-Leu-Phe), suggesting a role for FcRIII shedding in inflammatory reactions. Activation of the PNH neutrophils with IgG-coated latex beads appeared normal (although binding of dimer IgG complexes was reduced), indicating that FcRII, rather than FcRIII, is involved in neutrophil stimulation.  相似文献   

3.
Secreted transcription factor controls Mycobacterium tuberculosis virulence   总被引:1,自引:0,他引:1  
Raghavan S  Manzanillo P  Chan K  Dovey C  Cox JS 《Nature》2008,454(7205):717-721
  相似文献   

4.
Akeda Y  Galán JE 《Nature》2005,437(7060):911-915
Type III protein secretion systems are essential virulence factors of many bacteria pathogenic to humans, animals and plants. These systems mediate the transfer of bacterial virulence proteins directly into the host cell cytoplasm. Proteins are thought to travel this pathway in a largely unfolded manner, and a family of customized cytoplasmic chaperones, which specifically bind cognate secreted proteins, are essential for secretion. Here we show that InvC, an ATPase associated with a Salmonella enterica type III secretion system, has a critical function in substrate recognition. Furthermore, InvC induces chaperone release from and unfolding of the cognate secreted protein in an ATP-dependent manner. Our results show a similarity between the mechanisms of substrate recognition by type III protein secretion systems and AAA + ATPase disassembly machines.  相似文献   

5.
R H Weisbart  A Kacena  A Schuh  D W Golde 《Nature》1988,332(6165):647-648
Immunoglobulin A is the primary immunoglobulin isotype in tears, saliva, breast milk and other mucosal secretions, constituting between 6% and 15% of the total serum immunoglobulins. Human peripheral blood neutrophils have IgA receptors, but these cells do not normally participate in IgA-mediated phagocytosis. The haematopoietic factors granulocyte-macrophage colony-stimulating factor (GM-CSF) and granulocyte colony-stimulating factor (G-CSF) prime neutrophils to be more responsive to a variety of stimuli. We therefore studied their effect on IgA-mediated phagocytosis. GM-CSF and G-CSF both induce a change from low to high-affinity neutrophil IgA Fc crystallizable fragment receptors within 30 min; a change which is associated with the development of IgA-mediated phagocytosis. Human IL-3, which does not affect neutrophil function, is inactive in this system. These results define a new mechanism for CSF-augmented host defence whereby neutrophil function can be modulated by CSF-mediated IgA Fc receptor activation.  相似文献   

6.
Many bacterial pathogens can enter various host cells and then survive intracellularly, transiently evade humoral immunity, and further disseminate to other cells and tissues. When bacteria enter host cells and replicate intracellularly, the host cells sense the invading bacteria as damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs) by way of various pattern recognition receptors. As a result, the host cells induce alarm signals that activate the innate immune system. Therefore, bacteria must modulate host inflammatory signalling and dampen these alarm signals. How pathogens do this after invading epithelial cells remains unclear, however. Here we show that OspI, a Shigella flexneri effector encoded by ORF169b on the large plasmid and delivered by the type ΙΙΙ secretion system, dampens acute inflammatory responses during bacterial invasion by suppressing the tumour-necrosis factor (TNF)-receptor-associated factor 6 (TRAF6)-mediated signalling pathway. OspI is a glutamine deamidase that selectively deamidates the glutamine residue at position 100 in UBC13 to a glutamic acid residue. Consequently, the E2 ubiquitin-conjugating activity required for TRAF6 activation is inhibited, allowing S. flexneri OspI to modulate the diacylglycerol-CBM (CARD-BCL10-MALT1) complex-TRAF6-nuclear-factor-κB signalling pathway. We determined the 2.0 ? crystal structure of OspI, which contains a putative cysteine-histidine-aspartic acid catalytic triad. A mutational analysis showed this catalytic triad to be essential for the deamidation of UBC13. Our results suggest that S. flexneri inhibits acute inflammatory responses in the initial stage of infection by targeting the UBC13-TRAF6 complex.  相似文献   

7.
Natural conjugative plasmids induce bacterial biofilm development   总被引:44,自引:0,他引:44  
Ghigo JM 《Nature》2001,412(6845):442-445
Horizontal gene transfer is a principal source of evolution leading to change in the ecological character of bacterial species. Bacterial conjugation, which promotes the horizontal transfer of genetic material between donor and recipient cells by physical contact, is a phenomenon of fundamental evolutionary consequence. Although conjugation has been studied primarily in liquid, most natural bacterial populations are found associated with environmental surfaces in complex multispecies communities called biofilms. Biofilms are ideally suited to the exchange of genetic material of various origins, and it has been shown that bacterial conjugation occurs within biofilms. Here I investigate the direct contribution of conjugative plasmids themselves to the capacity of the bacterial host to form a biofilm. Natural conjugative plasmids expressed factors that induced planktonic bacteria to form or enter biofilm communities, which favour the infectious transfer of the plasmid. This general connection between conjugation and biofilms suggests that medically relevant plasmid-bearing strains are more likely to form a biofilm. This may influence both the chances of biofilm-related infection risks and of conjugational spread of virulence factors.  相似文献   

8.
A bacterial virulence determinant encoded by lysogenic coliphage lambda   总被引:30,自引:0,他引:30  
J J Barondess  J Beckwith 《Nature》1990,346(6287):871-874
  相似文献   

9.
细菌中的第二信使环二鸟苷酸(c-di-GMP)对细菌的运动性有调节作用.c-di-GMP调控鞭毛的生物合成、菌毛形成和菌毛蛋白的组成,以及其他一些与运动相关的蛋白的合成.细菌的运动性与其毒力、致病性、粘附性、趋化性、生物膜组成等密切相关.在革兰氏阴性细菌中,关于c-di-GMP的信号通路的研究较为清晰,而在革兰氏阳性细菌中,关于该信号转导通路的研究较少.此外,有关c-di-GMP的信号通路的研究主要集中在病原菌.该文主要综述了一些常见病原菌中c-di-GMP对其运动性的调控机制,为研究其他细菌c-di-GMP信号通路提供思路.  相似文献   

10.
During infection by Gram-negative pathogenic bacteria, the type III secretion system (T3SS) is assembled to allow for the direct transmission of bacterial virulence effectors into the host cell. The T3SS system is characterized by a series of prominent multi-component rings in the inner and outer bacterial membranes, as well as a translocation pore in the host cell membrane. These are all connected by a series of polymerized tubes that act as the direct conduit for the T3SS proteins to pass through to the host cell. During assembly of the T3SS, as well as the evolutionarily related flagellar apparatus, a post-translational cleavage event within the inner membrane proteins EscU/FlhB is required to promote a secretion-competent state. These proteins have long been proposed to act as a part of a molecular switch, which would regulate the appropriate chronological secretion of the various T3SS apparatus components during assembly and subsequently the transported virulence effectors. Here we show that a surface type II beta-turn in the Escherichia coli protein EscU undergoes auto-cleavage by a mechanism involving cyclization of a strictly conserved asparagine residue. Structural and in vivo analysis of point and deletion mutations illustrates the subtle conformational effects of auto-cleavage in modulating the molecular features of a highly conserved surface region of EscU, a potential point of interaction with other T3SS components at the inner membrane. In addition, this work provides new structural insight into the distinct conformational requirements for a large class of self-cleaving reactions involving asparagine cyclization.  相似文献   

11.
类黄酮是植物产生于不同部位的一大类次生代谢小分子,在植物各器官履行多种生理功能;对人类健康有广泛的药理和有益作用,包括抗氧化活性、自由基清除能力、预防冠心病、抗动脉粥样硬化、保肝、抗炎和抗癌活性,已获得医药及保健业的高度关注;研究表明:类黄酮还能通过破坏细菌细胞膜、抑制细菌脂肪酸、粘肽层、核酸与电子传递链和ATP合成、抑制细菌金属酶活性等,发挥抗菌抑菌作用;在细胞水平上可阻止细菌粘附到宿主受体,抑制细菌生物膜形成,不仅选择性地针对细菌细胞,也抑制毒性因子以及其他形式的微生物威胁;一些植物类黄酮能明显逆转抗生素的抗药性,提高其药效;开发和应用类黄酮药物,对抗生素耐药感染可能是一有前途的方法。  相似文献   

12.
13.
Mycobacterium tuberculosis claims more human lives each year than any other bacterial pathogen. Infection is maintained in spite of acquired immunity and resists eradication by antimicrobials. Despite an urgent need for new therapies targeting persistent bacteria, our knowledge of bacterial metabolism throughout the course of infection remains rudimentary. Here we report that persistence of M. tuberculosis in mice is facilitated by isocitrate lyase (ICL), an enzyme essential for the metabolism of fatty acids. Disruption of the icl gene attenuated bacterial persistence and virulence in immune-competent mice without affecting bacterial growth during the acute phase of infection. A link between the requirement for ICL and the immune status of the host was established by the restored virulence of delta icl bacteria in interferon-gamma knockout mice. This link was apparent at the level of the infected macrophage: Activation of infected macrophages increased expression of ICL, and the delta icl mutant was markedly attenuated for survival in activated but not resting macrophages. These data suggest that the metabolism of M. tuberculosis in vivo is profoundly influenced by the host response to infection, an observation with important implications for the treatment of chronic tuberculosis.  相似文献   

14.
P Wei  WW Wong  JS Park  EE Corcoran  SG Peisajovich  JJ Onuffer  A Weiss  WA Lim 《Nature》2012,488(7411):384-388
Bacterial pathogens have evolved specific effector proteins that, by interfacing with host kinase signalling pathways, provide a mechanism to evade immune responses during infection. Although these effectors contribute to pathogen virulence, we realized that they might also serve as valuable synthetic biology reagents for engineering cellular behaviour. Here we exploit two effector proteins, the Shigella flexneri OspF protein and Yersinia pestis YopH protein, to rewire kinase-mediated responses systematically both in yeast and mammalian immune cells. Bacterial effector proteins can be directed to inhibit specific mitogen-activated protein kinase pathways selectively in yeast by artificially targeting them to pathway-specific complexes. Moreover, we show that unique properties of the effectors generate new pathway behaviours: OspF, which irreversibly inactivates mitogen-activated protein kinases, was used to construct a synthetic feedback circuit that shows novel frequency-dependent input filtering. Finally, we show that effectors can be used in T cells, either as feedback modulators to tune the T-cell response amplitude precisely, or as an inducible pause switch that can temporarily disable T-cell activation. These studies demonstrate how pathogens could provide a rich toolkit of parts to engineer cells for therapeutic or biotechnological applications.  相似文献   

15.
16.
Rapid neutrophil adhesion to activated endothelium mediated by GMP-140.   总被引:134,自引:0,他引:134  
Granule membrane protein-140 (GMP-140), a membrane glycoprotein of platelet and endothelial cell secretory granules, is rapidly redistributed to the plasma membrane during cellular activation and degranulation. Also known as PADGEM protein, GMP-140 is structurally related to two molecules involved in leukocyte adhesion to vascular endothelium: ELAM-1, a cytokine-inducible endothelial cell receptor for neutrophils, and the MEL-14 lymphocyte homing receptor. These three proteins define a new gene family, termed selectins, each of which contains an N-terminal lectin domain, followed by an epidermal growth factor-like module, a variable number of repeating units related to those in complement-binding proteins, a transmembrane domain, and a short cytoplasmic tail. Here we demonstrate that GMP-140 can mediate leukocyte adhesion, thus establishing a functional similarity with the other selectins. Human neutrophils and promyelocytic HL-60 cells bind specifically to COS cells transfected with GMP-140 complementary DNA and to microtitre wells coated with purified GMP-140. Cell binding does not require active neutrophil metabolism but is dependent on extracellular Ca2+. Within minutes after stimulation with phorbol esters or histamine, human endothelial cells become adhesive for neutrophils; this interaction is inhibited by antibodies to GMP-140. Thus, GMP-140 expressed by activated endothelium might promote rapid neutrophil targeting to sites of acute inflammation.  相似文献   

17.
TREM-1 amplifies inflammation and is a crucial mediator of septic shock   总被引:66,自引:0,他引:66  
Bouchon A  Facchetti F  Weigand MA  Colonna M 《Nature》2001,410(6832):1103-1107
Host innate responses to bacterial infections are primarily mediated by neutrophils and monocytes/macrophages. These cells express pattern recognition receptors (PRRs) that bind conserved molecular structures shared by groups of microorganisms. Stimulation of PRR signalling pathways initiates secretion of proinflammatory mediators, which promote the elimination of infectious agents and the induction of tissue repair. Excessive inflammation owing to bacterial infections can lead to tissue damage and septic shock. Here we show that inflammatory responses to microbial products are amplified by a pathway mediated by triggering receptor expressed on myeloid cells (TREM)-1. TREM-1 is an activating receptor expressed at high levels on neutrophils and monocytes that infiltrate human tissues infected with bacteria. Furthermore, it is upregulated on peritoneal neutrophils of patients with microbial sepsis and mice with experimental lipopolysaccaride (LPS)-induced shock. Notably, blockade of TREM-1 protects mice against LPS-induced shock, as well as microbial sepsis caused by live Escherichia coli or caecal ligation and puncture. These results demonstrate a critical function of TREM-1 in acute inflammatory responses to bacteria and implicate TREM-1 as a potential therapeutic target for septic shock.  相似文献   

18.
Shigella flexneri induces apoptosis in infected macrophages.   总被引:63,自引:0,他引:63  
A Zychlinsky  M C Prevost  P J Sansonetti 《Nature》1992,358(6382):167-169
The Gram-negative bacterial pathogen Shigella flexneri causes dysentery by invading the human colonic mucosa. Bacteria are phagocytosed by enterocytes, escape from the phagosome into the cytoplasm and spread to adjacent cells. After crossing the epithelium, Shigella reaches the lamina propria of intestinal villi, the first line of defence. This tissue is densely populated with phagocytes that are killed in great numbers, resulting in abscesses. The genes required for cell invasion and macrophage killing are located on a 220-kilobase plasmid. We report here on the mechanism of cytotoxicity used by S. flexneri to kill macrophages. Each of four different strains was tested for its capacity to induce cell death. An invasive strain induced programmed cell death (apoptosis), whereas its non-invasive, plasmidcured isogenic strain was not toxic; neither was a mutant in ipa B (ref. 10) (invasion protein antigen), a gene necessary for entry. A non-invasive strain expressing the haemolysin operon of Escherichia coli induced accidental cell death (necrosis), demonstrating that other bacterial cytotoxic mechanisms do not lead to apoptosis. This is the first evidence that an invasive bacterial pathogen can induce suicide in its host cells.  相似文献   

19.
Listeria monocytogenes is an intracellular bacterial pathogen that replicates rapidly in the cytosol of host cells during acute infection. Surprisingly, these bacteria were found to occupy vacuoles in liver granuloma macrophages during persistent infection of severe combined immunodeficient (SCID) mice. Here we show that L. monocytogenes can replicate in vacuoles within macrophages. In livers of SCID mice infected for 21 days, we observed bacteria in large LAMP1(+) compartments that we termed spacious Listeria-containing phagosomes (SLAPs). SLAPs were also observed in vitro, and were found to be non-acidic and non-degradative compartments that are generated in an autophagy-dependent manner. The replication rate of bacteria in SLAPs was found to be reduced compared to the rate of those in the cytosol. Listeriolysin O (LLO, encoded by hly), a pore-forming toxin essential for L. monocytogenes virulence, was necessary and sufficient for SLAP formation. A L. monocytogenes mutant with low LLO expression was impaired for phagosome escape but replicated slowly in SLAPs over a 72 h period. Therefore, our studies reveal a role for LLO in promoting L. monocytogenes replication in vacuoles and suggest a mechanism by which this pathogen can establish persistent infection in host macrophages.  相似文献   

20.
The plant root defines the interface between a multicellular eukaryote and soil, one of the richest microbial ecosystems on Earth. Notably, soil bacteria are able to multiply inside roots as benign endophytes and modulate plant growth and development, with implications ranging from enhanced crop productivity to phytoremediation. Endophytic colonization represents an apparent paradox of plant innate immunity because plant cells can detect an array of microbe-associated molecular patterns (also known as MAMPs) to initiate immune responses to terminate microbial multiplication. Several studies attempted to describe the structure of bacterial root endophytes; however, different sampling protocols and low-resolution profiling methods make it difficult to infer general principles. Here we describe methodology to characterize and compare soil- and root-inhabiting bacterial communities, which reveals not only a function for metabolically active plant cells but also for inert cell-wall features in the selection of soil bacteria for host colonization. We show that the roots of Arabidopsis thaliana, grown in different natural soils under controlled environmental conditions, are preferentially colonized by Proteobacteria, Bacteroidetes and Actinobacteria, and each bacterial phylum is represented by a dominating class or family. Soil type defines the composition of root-inhabiting bacterial communities and host genotype determines their ribotype profiles to a limited extent. The identification of soil-type-specific members within the root-inhabiting assemblies supports our conclusion that these represent soil-derived root endophytes. Surprisingly, plant cell-wall features of other tested plant species seem to provide a sufficient cue for the assembly of approximately 40% of the Arabidopsis bacterial root-inhabiting microbiota, with a bias for Betaproteobacteria. Thus, this root sub-community may not be Arabidopsis-specific but saprophytic bacteria that would naturally be found on any plant root or plant debris in the tested soils. By contrast, colonization of Arabidopsis roots by members of the Actinobacteria depends on other cues from metabolically active host cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号