首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tracing the stepwise oxygenation of the Proterozoic ocean   总被引:9,自引:0,他引:9  
Scott C  Lyons TW  Bekker A  Shen Y  Poulton SW  Chu X  Anbar AD 《Nature》2008,452(7186):456-459
Biogeochemical signatures preserved in ancient sedimentary rocks provide clues to the nature and timing of the oxygenation of the Earth's atmosphere. Geochemical data suggest that oxygenation proceeded in two broad steps near the beginning and end of the Proterozoic eon (2,500 to 542 million years ago). The oxidation state of the Proterozoic ocean between these two steps and the timing of deep-ocean oxygenation have important implications for the evolutionary course of life on Earth but remain poorly known. Here we present a new perspective on ocean oxygenation based on the authigenic accumulation of the redox-sensitive transition element molybdenum in sulphidic black shales. Accumulation of authigenic molybdenum from sea water is already seen in shales by 2,650 Myr ago; however, the small magnitudes of these enrichments reflect weak or transient sources of dissolved molybdenum before about 2,200 Myr ago, consistent with minimal oxidative weathering of the continents. Enrichments indicative of persistent and vigorous oxidative weathering appear in shales deposited at roughly 2,150 Myr ago, more than 200 million years after the initial rise in atmospheric oxygen. Subsequent expansion of sulphidic conditions after about 1,800 Myr ago (refs 8, 9) maintained a mid-Proterozoic molybdenum reservoir below 20 per cent of the modern inventory, which in turn may have acted as a nutrient feedback limiting the spatiotemporal distribution of euxinic (sulphidic) bottom waters and perhaps the evolutionary and ecological expansion of eukaryotic organisms. By 551 Myr ago, molybdenum contents reflect a greatly expanded oceanic reservoir due to oxygenation of the deep ocean and corresponding decrease in sulphidic conditions in the sediments and water column.  相似文献   

2.
Early oxygenation of the terrestrial environment during the Mesoproterozoic   总被引:2,自引:0,他引:2  
Parnell J  Boyce AJ  Mark D  Bowden S  Spinks S 《Nature》2010,468(7321):290-293
Geochemical data from ancient sedimentary successions provide evidence for the progressive evolution of Earth's atmosphere and oceans. Key stages in increasing oxygenation are postulated for the Palaeoproterozoic era (~2.3?billion years ago, Gyr ago) and the late Proterozoic eon (about 0.8?Gyr ago), with the latter implicated in the subsequent metazoan evolutionary expansion. In support of this rise in oxygen concentrations, a large database shows a marked change in the bacterially mediated fractionation of seawater sulphate to sulphide of Δ(34)S?相似文献   

3.
Gill BC  Lyons TW  Young SA  Kump LR  Knoll AH  Saltzman MR 《Nature》2011,469(7328):80-83
Widespread anoxia in the ocean is frequently invoked as a primary driver of mass extinction as well as a long-term inhibitor of evolutionary radiation on early Earth. In recent biogeochemical studies it has been hypothesized that oxygen deficiency was widespread in subsurface water masses of later Cambrian oceans, possibly influencing evolutionary events during this time. Physical evidence of widespread anoxia in Cambrian oceans has remained elusive and thus its potential relationship to the palaeontological record remains largely unexplored. Here we present sulphur isotope records from six globally distributed stratigraphic sections of later Cambrian marine rocks (about 499 million years old). We find a positive sulphur isotope excursion in phase with the Steptoean Positive Carbon Isotope Excursion (SPICE), a large and rapid excursion in the marine carbon isotope record, which is thought to be indicative of a global carbon cycle perturbation. Numerical box modelling of the paired carbon sulphur isotope data indicates that these isotope shifts reflect transient increases in the burial of organic carbon and pyrite sulphur in sediments deposited under large-scale anoxic and sulphidic (euxinic) conditions. Independently, molybdenum abundances in a coeval black shale point convincingly to the transient spread of anoxia. These results identify the SPICE interval as the best characterized ocean anoxic event in the pre-Mesozoic ocean and an extreme example of oxygen deficiency in the later Cambrian ocean. Thus, a redox structure similar to those in Proterozoic oceans may have persisted or returned in the oceans of the early Phanerozoic eon. Indeed, the environmental challenges presented by widespread anoxia may have been a prevalent if not dominant influence on animal evolution in Cambrian oceans.  相似文献   

4.
Reassessing the first appearance of eukaryotes and cyanobacteria   总被引:1,自引:0,他引:1  
Rasmussen B  Fletcher IR  Brocks JJ  Kilburn MR 《Nature》2008,455(7216):1101-1104
The evolution of oxygenic photosynthesis had a profound impact on the Earth's surface chemistry, leading to a sharp rise in atmospheric oxygen between 2.45 and 2.32 billion years (Gyr) ago and the onset of extreme ice ages. The oldest widely accepted evidence for oxygenic photosynthesis has come from hydrocarbons extracted from approximately 2.7-Gyr-old shales in the Pilbara Craton, Australia, which contain traces of biomarkers (molecular fossils) indicative of eukaryotes and suggestive of oxygen-producing cyanobacteria. The soluble hydrocarbons were interpreted to be indigenous and syngenetic despite metamorphic alteration and extreme enrichment (10-20 per thousand) of (13)C relative to bulk sedimentary organic matter. Here we present micrometre-scale, in situ (13)C/(12)C measurements of pyrobitumen (thermally altered petroleum) and kerogen from these metamorphosed shales, including samples that originally yielded biomarkers. Our results show that both kerogen and pyrobitumen are strongly depleted in (13)C, indicating that indigenous petroleum is 10-20 per thousand lighter than the extracted hydrocarbons. These results are inconsistent with an indigenous origin for the biomarkers. Whatever their origin, the biomarkers must have entered the rock after peak metamorphism approximately 2.2 Gyr ago and thus do not provide evidence for the existence of eukaryotes and cyanobacteria in the Archaean eon. The oldest fossil evidence for eukaryotes and cyanobacteria therefore reverts to 1.78-1.68 Gyr ago and approximately 2.15 Gyr ago, respectively. Our results eliminate the evidence for oxygenic photosynthesis approximately 2.7 Gyr ago and exclude previous biomarker evidence for a long delay (approximately 300 million years) between the appearance of oxygen-producing cyanobacteria and the rise in atmospheric oxygen 2.45-2.32 Gyr ago.  相似文献   

5.
Brocks JJ  Love GD  Summons RE  Knoll AH  Logan GA  Bowden SA 《Nature》2005,437(7060):866-870
The disappearance of iron formations from the geological record approximately 1.8 billion years (Gyr) ago was the consequence of rising oxygen levels in the atmosphere starting 2.45-2.32 Gyr ago. It marks the end of a 2.5-Gyr period dominated by anoxic and iron-rich deep oceans. However, despite rising oxygen levels and a concomitant increase in marine sulphate concentration, related to enhanced sulphide oxidation during continental weathering, the chemistry of the oceans in the following mid-Proterozoic interval (approximately 1.8-0.8 Gyr ago) probably did not yet resemble our oxygen-rich modern oceans. Recent data indicate that marine oxygen and sulphate concentrations may have remained well below current levels during this period, with one model indicating that anoxic and sulphidic marine basins were widespread, and perhaps even globally distributed. Here we present hydrocarbon biomarkers (molecular fossils) from a 1.64-Gyr-old basin in northern Australia, revealing the ecological structure of mid-Proterozoic marine communities. The biomarkers signify a marine basin with anoxic, sulphidic, sulphate-poor and permanently stratified deep waters, hostile to eukaryotic algae. Phototrophic purple sulphur bacteria (Chromatiaceae) were detected in the geological record based on the new carotenoid biomarker okenane, and they seem to have co-existed with communities of green sulphur bacteria (Chlorobiaceae). Collectively, the biomarkers support mounting evidence for a long-lasting Proterozoic world in which oxygen levels remained well below modern levels.  相似文献   

6.
Robert F  Chaussidon M 《Nature》2006,443(7114):969-972
The terrestrial sediment record indicates that the Earth's climate varied drastically in the Precambrian era (before 550 million years ago), ranging from surface temperatures similar to or higher than today's to global glaciation events. The most continuous record of sea surface temperatures of that time has been derived from variations in oxygen isotope ratios of cherts (siliceous sediments), but the long-term cooling of the oceans inferred from those data has been questioned because the oxygen isotope signature could have been reset through the exchange with hydrothermal fluids after deposition of the sediments. Here we show that the silicon isotopic composition of cherts more than 550 million years old shows systematic variations with age that support the earlier conclusion of long-term ocean cooling and exclude post-depositional exchange as the main source of the isotopic variations. In agreement with other lines of evidence, a model of the silicon cycle in the Precambrian era shows that the observed silicon isotope variations imply seawater temperature changes from about 70 degrees C 3,500 million years ago to about 20 degrees C 800 million years ago.  相似文献   

7.
Eocene bipolar glaciation associated with global carbon cycle changes   总被引:2,自引:0,他引:2  
Tripati A  Backman J  Elderfield H  Ferretti P 《Nature》2005,436(7049):341-346
The transition from the extreme global warmth of the early Eocene 'greenhouse' climate approximately 55 million years ago to the present glaciated state is one of the most prominent changes in Earth's climatic evolution. It is widely accepted that large ice sheets first appeared on Antarctica approximately 34 million years ago, coincident with decreasing atmospheric carbon dioxide concentrations and a deepening of the calcite compensation depth in the world's oceans, and that glaciation in the Northern Hemisphere began much later, between 10 and 6 million years ago. Here we present records of sediment and foraminiferal geochemistry covering the greenhouse-icehouse climate transition. We report evidence for synchronous deepening and subsequent oscillations in the calcite compensation depth in the tropical Pacific and South Atlantic oceans from approximately 42 million years ago, with a permanent deepening 34 million years ago. The most prominent variations in the calcite compensation depth coincide with changes in seawater oxygen isotope ratios of up to 1.5 per mil, suggesting a lowering of global sea level through significant storage of ice in both hemispheres by at least 100 to 125 metres. Variations in benthic carbon isotope ratios of up to approximately 1.4 per mil occurred at the same time, indicating large changes in carbon cycling. We suggest that the greenhouse-icehouse transition was closely coupled to the evolution of atmospheric carbon dioxide, and that negative carbon cycle feedbacks may have prevented the permanent establishment of large ice sheets earlier than 34 million years ago.  相似文献   

8.
Peters SE  Gaines RR 《Nature》2012,484(7394):363-366
The transition between the Proterozoic and Phanerozoic eons, beginning 542?million years (Myr) ago, is distinguished by the diversification of multicellular animals and by their acquisition of mineralized skeletons during the Cambrian period. Considerable progress has been made in documenting and more precisely correlating biotic patterns in the Neoproterozoic-Cambrian fossil record with geochemical and physical environmental perturbations, but the mechanisms responsible for those perturbations remain uncertain. Here we use new stratigraphic and geochemical data to show that early Palaeozoic marine sediments deposited approximately 540-480?Myr ago record both an expansion in the area of shallow epicontinental seas and anomalous patterns of chemical sedimentation that are indicative of increased oceanic alkalinity and enhanced chemical weathering of continental crust. These geochemical conditions were caused by a protracted period of widespread continental denudation during the Neoproterozoic followed by extensive physical reworking of soil, regolith and basement rock during the first continental-scale marine transgression of the Phanerozoic. The resultant globally occurring stratigraphic surface, which in most regions separates continental crystalline basement rock from much younger Cambrian shallow marine sedimentary deposits, is known as the Great Unconformity. Although Darwin and others have interpreted this widespread hiatus in sedimentation on the continents as a failure of the geologic record, this palaeogeomorphic surface represents a unique physical environmental boundary condition that affected seawater chemistry during a time of profound expansion of shallow marine habitats. Thus, the formation of the Great Unconformity may have been an environmental trigger for the evolution of biomineralization and the 'Cambrian explosion' of ecologic and taxonomic diversity following the Neoproterozoic emergence of animals.  相似文献   

9.
Poulton SW  Fralick PW  Canfield DE 《Nature》2004,431(7005):173-177
The Proterozoic aeon (2.5 to 0.54 billion years (Gyr) ago) marks the time between the largely anoxic world of the Archean (> 2.5 Gyr ago) and the dominantly oxic world of the Phanerozoic (< 0.54 Gyr ago). The course of ocean chemistry through the Proterozoic has traditionally been explained by progressive oxygenation of the deep ocean in response to an increase in atmospheric oxygen around 2.3 Gyr ago. This postulated rise in the oxygen content of the ocean is in turn thought to have led to the oxidation of dissolved iron, Fe(II), thus ending the deposition of banded iron formations (BIF) around 1.8 Gyr ago. An alternative interpretation suggests that the increasing atmospheric oxygen levels enhanced sulphide weathering on land and the flux of sulphate to the oceans. This increased rates of sulphate reduction, resulting in Fe(II) removal in the form of pyrite as the oceans became sulphidic. Here we investigate sediments from the approximately 1.8-Gyr-old Animikie group, Canada, which were deposited during the final stages of the main global period of BIF deposition. This allows us to evaluate the two competing hypotheses for the termination of BIF deposition. We use iron-sulphur-carbon (Fe-S-C) systematics to demonstrate continued ocean anoxia after the final global deposition of BIF and show that a transition to sulphidic bottom waters was ultimately responsible for the termination of BIF deposition. Sulphidic conditions may have persisted until a second major rise in oxygen between 0.8 to 0.58 Gyr ago, possibly reducing global rates of primary production and arresting the pace of algal evolution.  相似文献   

10.
Geological and palaeomagnetic studies indicate that ice sheets may have reached the Equator at the end of the Proterozoic eon, 800 to 550 million years ago, leading to the suggestion of a fully ice-covered 'snowball Earth'. Climate model simulations indicate that such a snowball state for the Earth depends on anomalously low atmospheric carbon dioxide concentrations, in addition to the Sun being 6 per cent fainter than it is today. However, the mechanisms producing such low carbon dioxide concentrations remain controversial. Here we assess the effect of the palaeogeographic changes preceding the Sturtian glacial period, 750 million years ago, on the long-term evolution of atmospheric carbon dioxide levels using the coupled climate-geochemical model GEOCLIM. In our simulation, the continental break-up of Rodinia leads to an increase in runoff and hence consumption of carbon dioxide through continental weathering that decreases atmospheric carbon dioxide concentrations by 1,320 p.p.m. This indicates that tectonic changes could have triggered a progressive transition from a 'greenhouse' to an 'icehouse' climate during the Neoproterozoic era. When we combine these results with the concomitant weathering effect of the voluminous basaltic traps erupted throughout the break-up of Rodinia, our simulation results in a snowball glaciation.  相似文献   

11.
Keller CB  Schoene B 《Nature》2012,485(7399):490-493
The Earth has cooled over the past 4.5 billion years (Gyr) as a result of surface heat loss and declining radiogenic heat production. Igneous geochemistry has been used to understand how changing heat flux influenced Archaean geodynamics, but records of systematic geochemical evolution are complicated by heterogeneity of the rock record and uncertainties regarding selection and preservation bias. Here we apply statistical sampling techniques to a geochemical database of about 70,000 samples from the continental igneous rock record to produce a comprehensive record of secular geochemical evolution throughout Earth history. Consistent with secular mantle cooling, compatible and incompatible elements in basalts record gradually decreasing mantle melt fraction through time. Superimposed on this gradual evolution is a pervasive geochemical discontinuity occurring about 2.5?Gyr ago, involving substantial decreases in mantle melt fraction in basalts, and in indicators of deep crustal melting and fractionation, such as Na/K, Eu/Eu* (europium anomaly) and La/Yb ratios in felsic rocks. Along with an increase in preserved crustal thickness across the Archaean/Proterozoic boundary, these data are consistent with a model in which high-degree Archaean mantle melting produced a thick, mafic lower crust and consequent deep crustal delamination and melting--leading to abundant tonalite-trondhjemite-granodiorite magmatism and a thin preserved Archaean crust. The coincidence of the observed changes in geochemistry and crustal thickness with stepwise atmospheric oxidation at the end of the Archaean eon provides a significant temporal link between deep Earth geochemical processes and the rise of atmospheric oxygen on the Earth.  相似文献   

12.
The chemical composition of the ocean changed markedly with the oxidation of the Earth's surface, and this process has profoundly influenced the evolutionary and ecological history of life. The early Earth was characterized by a reducing ocean-atmosphere system, whereas the Phanerozoic eon (less than 542 million years ago) is known for a stable and oxygenated biosphere conducive to the radiation of animals. The redox characteristics of surface environments during Earth's middle age (1.8-1 billion years ago) are less well known, but it is generally assumed that the mid-Proterozoic was home to a globally sulphidic (euxinic) deep ocean. Here we present iron data from a suite of mid-Proterozoic marine mudstones. Contrary to the popular model, our results indicate that ferruginous (anoxic and Fe(2+)-rich) conditions were both spatially and temporally extensive across diverse palaeogeographic settings in the mid-Proterozoic ocean, inviting new models for the temporal distribution of iron formations and the availability of bioessential trace elements during a critical window for eukaryotic evolution.  相似文献   

13.
The evolution of the marine phosphate reservoir   总被引:3,自引:0,他引:3  
Phosphorus is a biolimiting nutrient that has an important role in regulating the burial of organic matter and the redox state of the ocean-atmosphere system. The ratio of phosphorus to iron in iron-oxide-rich sedimentary rocks can be used to track dissolved phosphate concentrations if the dissolved silica concentration of sea water is estimated. Here we present iron and phosphorus concentration ratios from distal hydrothermal sediments and iron formations through time to study the evolution of the marine phosphate reservoir. The data suggest that phosphate concentrations have been relatively constant over the Phanerozoic eon, the past 542 million years (Myr) of Earth's history. In contrast, phosphate concentrations seem to have been elevated in Precambrian oceans. Specifically, there is a peak in phosphorus-to-iron ratios in Neoproterozoic iron formations dating from ~750 to ~635?Myr ago, indicating unusually high dissolved phosphate concentrations in the aftermath of widespread, low-latitude 'snowball Earth' glaciations. An enhanced postglacial phosphate flux would have caused high rates of primary productivity and organic carbon burial and a transition to more oxidizing conditions in the ocean and atmosphere. The snowball Earth glaciations and Neoproterozoic oxidation are both suggested as triggers for the evolution and radiation of metazoans. We propose that these two factors are intimately linked; a glacially induced nutrient surplus could have led to an increase in atmospheric oxygen, paving the way for the rise of metazoan life.  相似文献   

14.
Rohde RA  Muller RA 《Nature》2005,434(7030):208-210
It is well known that the diversity of life appears to fluctuate during the course of the Phanerozoic, the eon during which hard shells and skeletons left abundant fossils (0-542 million years ago). Here we show, using Sepkoski's compendium of the first and last stratigraphic appearances of 36,380 marine genera, a strong 62 +/- 3-million-year cycle, which is particularly evident in the shorter-lived genera. The five great extinctions enumerated by Raup and Sepkoski may be an aspect of this cycle. Because of the high statistical significance we also consider the contributions of environmental factors, and possible causes.  相似文献   

15.
Sulphur isotope evidence for an oxic Archaean atmosphere   总被引:1,自引:0,他引:1  
Ohmoto H  Watanabe Y  Ikemi H  Poulson SR  Taylor BE 《Nature》2006,442(7105):908-911
The presence of mass-independently fractionated sulphur isotopes (MIF-S) in many sedimentary rocks older than approximately 2.4 billion years (Gyr), and the absence of MIF-S in younger rocks, has been considered the best evidence for a dramatic change from an anoxic to oxic atmosphere around 2.4 Gyr ago. This is because the only mechanism known to produce MIF-S has been ultraviolet photolysis of volcanic sulphur dioxide gas in an oxygen-poor atmosphere. Here we report the absence of MIF-S throughout approximately 100-m sections of 2.76-Gyr-old lake sediments and 2.92-Gyr-old marine shales in the Pilbara Craton, Western Australia. We propose three possible interpretations of the MIF-S geologic record: (1) the level of atmospheric oxygen fluctuated greatly during the Archaean era; (2) the atmosphere has remained oxic since approximately 3.8 Gyr ago, and MIF-S in sedimentary rocks represents times and regions of violent volcanic eruptions that ejected large volumes of sulphur dioxide into the stratosphere; or (3) MIF-S in rocks was mostly created by non-photochemical reactions during sediment diagenesis, and thus is not linked to atmospheric chemistry.  相似文献   

16.
Key steps in atmospheric evolution occurred in the Archaean. The Hadean atmosphere was created by the inorganic processes of volatile accretion from space and degassing from the interior, and then modified by chemical and photochemical processes. The air was probably initially anoxic, though there may have been a supply of oxidation power as a consequence of hydrodynamic escape to space of hydrogen from water. Early subduction may have removed CO2 and the Hadean planet may have been icy. In the Archaean, as anoxygenic and then oxygenic photosynthesis evolved, biological activity remade the atmosphere. Sedimentological evidence implies there were liquid oceans despite the faint young Sun. These oceans may have been sustained by the greenhouse warming effect of biologically-made methane. Oxygenesis in the late Archaean would have released free O2 into the water. This would have created oxic surface waters, challenging the methane greenhouse. After the Great Oxidation Event around 2.3 to 2.4 billion years ago, the atmosphere itself became oxic, perhaps triggering a glacial crisis by cutting methane-caused greenhouse warming. By the early Proterozoic, all the key biochemical processes that maintain the modern atmosphere were probably present in the microbial community.  相似文献   

17.
Bjerrum CJ  Canfield DE 《Nature》2002,417(6885):159-162
After the evolution of oxygen-producing cyanobacteria at some time before 2.7 billion years ago, oxygen production on Earth is thought to have depended on the availability of nutrients in the oceans, such as phosphorus (in the form of orthophosphate). In the modern oceans, a significant removal pathway for phosphorus occurs by way of its adsorption onto iron oxide deposits. Such deposits were thought to be more abundant in the past when, under low sulphate conditions, the formation of large amounts of iron oxides resulted in the deposition of banded iron formations. Under these circumstances, phosphorus removal by iron oxide adsorption could have been enhanced. Here we analyse the phosphorus and iron content of banded iron formations to show that ocean orthophosphate concentrations from 3.2 to 1.9 billion years ago (during the Archaean and early Proterozoic eras) were probably only approximately 10-25% of present-day concentrations. We suggest therefore that low phosphorus availability should have significantly reduced rates of photosynthesis and carbon burial, thereby reducing the long-term oxygen production on the early Earth--as previously speculated--and contributing to the low concentrations of atmospheric oxygen during the late Archaean and early Proterozoic.  相似文献   

18.
Extreme winds and waves in the aftermath of a Neoproterozoic glaciation   总被引:1,自引:0,他引:1  
Allen PA  Hoffman PF 《Nature》2005,433(7022):123-127
The most severe excursions in the Earth's climatic history are thought to be associated with Proterozoic glaciations. According to the 'Snowball Earth' hypothesis, the Marinoan glaciation, which ended about 635 million years ago, involved global or nearly global ice cover. At the termination of this glacial period, rapid melting of continental ice sheets must have caused a large rise in sea level. Here we show that sediments deposited during this sea level rise contain remarkable structures that we interpret as giant wave ripples. These structures occur at homologous stratigraphic levels in Australia, Brazil, Canada, Namibia and Svalbard. Our hydrodynamic analysis of these structures suggests maximum wave periods of 21 to 30 seconds, significantly longer than those typical for today's oceans. The reconstructed wave conditions could only have been generated under sustained high wind velocities exceeding 20 metres per second in fetch-unlimited ocean basins. We propose that these extraordinary wind and wave conditions were characteristic of the climatic transit, and provide observational targets for atmospheric circulation models.  相似文献   

19.
Edgar KM  Wilson PA  Sexton PF  Suganuma Y 《Nature》2007,448(7156):908-911
Major ice sheets were permanently established on Antarctica approximately 34 million years ago, close to the Eocene/Oligocene boundary, at the same time as a permanent deepening of the calcite compensation depth in the world's oceans. Until recently, it was thought that Northern Hemisphere glaciation began much later, between 11 and 5 million years ago. This view has been challenged, however, by records of ice rafting at high northern latitudes during the Eocene epoch and by estimates of global ice volume that exceed the storage capacity of Antarctica at the same time as a temporary deepening of the calcite compensation depth approximately 41.6 million years ago. Here we test the hypothesis that large ice sheets were present in both hemispheres approximately 41.6 million years ago using marine sediment records of oxygen and carbon isotope values and of calcium carbonate content from the equatorial Atlantic Ocean. These records allow, at most, an ice budget that can easily be accommodated on Antarctica, indicating that large ice sheets were not present in the Northern Hemisphere. The records also reveal a brief interval shortly before the temporary deepening of the calcite compensation depth during which the calcite compensation depth shoaled, ocean temperatures increased and carbon isotope values decreased in the equatorial Atlantic. The nature of these changes around 41.6 million years ago implies common links, in terms of carbon cycling, with events at the Eocene/Oligocene boundary and with the 'hyperthermals' of the Early Eocene climate optimum. Our findings help to resolve the apparent discrepancy between the geological records of Northern Hemisphere glaciation and model results that indicate that the threshold for continental glaciation was crossed earlier in the Southern Hemisphere than in the Northern Hemisphere.  相似文献   

20.
Early Oligocene initiation of North Atlantic Deep Water formation   总被引:9,自引:0,他引:9  
Davies R  Cartwright J  Pike J  Line C 《Nature》2001,410(6831):917-920
Dating the onset of deep-water flow between the Arctic and North Atlantic oceans is critical for modelling climate change in the Northern Hemisphere and for explaining changes in global ocean circulation throughout the Cenozoic era (from about 65 million years ago to the present). In the early Cenozoic era, exchange between these two ocean basins was inhibited by the Greenland-Scotland ridge, but a gateway through the Faeroe-Shetland basin has been hypothesized. Previous estimates of the date marking the onset of deep-water circulation through this basin-on the basis of circumstantial evidence from neighbouring basins-have been contradictory, ranging from about 35 to 15 million years ago. Here we describe the newly discovered Southeast Faeroes drift, which extends for 120 km parallel to the basin axis. The onset of deposition in this drift has been dated to the early Oligocene epoch ( approximately 35 million years ago) from a petroleum exploration borehole. We show that the drift was deposited under a southerly flow regime, and conclude that the initiation of deep-water circulation from the Norwegian Sea into the North Atlantic Ocean took place much earlier than is currently assumed in most numerical models of ancient ocean circulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号