首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Conboy IM  Conboy MJ  Wagers AJ  Girma ER  Weissman IL  Rando TA 《Nature》2005,433(7027):760-764
The decline of tissue regenerative potential is a hallmark of ageing and may be due to age-related changes in tissue-specific stem cells. A decline in skeletal muscle stem cell (satellite cell) activity due to a loss of Notch signalling results in impaired regeneration of aged muscle. The decline in hepatic progenitor cell proliferation owing to the formation of a complex involving cEBP-alpha and the chromatin remodelling factor brahma (Brm) inhibits the regenerative capacity of aged liver. To examine the influence of systemic factors on aged progenitor cells from these tissues, we established parabiotic pairings (that is, a shared circulatory system) between young and old mice (heterochronic parabioses), exposing old mice to factors present in young serum. Notably, heterochronic parabiosis restored the activation of Notch signalling as well as the proliferation and regenerative capacity of aged satellite cells. The exposure of satellite cells from old mice to young serum enhanced the expression of the Notch ligand (Delta), increased Notch activation, and enhanced proliferation in vitro. Furthermore, heterochronic parabiosis increased aged hepatocyte proliferation and restored the cEBP-alpha complex to levels seen in young animals. These results suggest that the age-related decline of progenitor cell activity can be modulated by systemic factors that change with age.  相似文献   

2.
A role for Wnt signalling in self-renewal of haematopoietic stem cells   总被引:92,自引:0,他引:92  
Haematopoietic stem cells (HSCs) have the ability to renew themselves and to give rise to all lineages of the blood; however, the signals that regulate HSC self-renewal remain unclear. Here we show that the Wnt signalling pathway has an important role in this process. Overexpression of activated beta-catenin expands the pool of HSCs in long-term cultures by both phenotype and function. Furthermore, HSCs in their normal microenvironment activate a LEF-1/TCF reporter, which indicates that HCSs respond to Wnt signalling in vivo. To demonstrate the physiological significance of this pathway for HSC proliferation we show that the ectopic expression of axin or a frizzled ligand-binding domain, inhibitors of the Wnt signalling pathway, leads to inhibition of HSC growth in vitro and reduced reconstitution in vivo. Furthermore, activation of Wnt signalling in HSCs induces increased expression of HoxB4 and Notch1, genes previously implicated in self-renewal of HSCs. We conclude that the Wnt signalling pathway is critical for normal HSC homeostasis in vitro and in vivo, and provide insight into a potential molecular hierarchy of regulation of HSC development.  相似文献   

3.
Ohlstein B  Spradling A 《Nature》2006,439(7075):470-474
Vertebrate and invertebrate digestive systems show extensive similarities in their development, cellular makeup and genetic control. The Drosophila midgut is typical: enterocytes make up the majority of the intestinal epithelial monolayer, but are interspersed with hormone-producing enteroendocrine cells. Human (and mouse) intestinal cells are continuously replenished by stem cells, the misregulation of which may underlie some common digestive diseases and cancer. In contrast, stem cells have not been described in the intestines of flies, and Drosophila intestinal cells have been thought to be relatively stable. Here we use lineage labelling to show that adult Drosophila posterior midgut cells are continuously replenished by a distinctive population of intestinal stem cells (ISCs). As in vertebrates, ISCs are multipotent, and Notch signalling is required to produce an appropriate fraction of enteroendocrine cells. Notch is also required for the differentiation of ISC daughter cells, a role that has not been addressed in vertebrates. Unlike previously characterized stem cells, which reside in niches containing a specific partner stromal cell, ISCs adjoin only the basement membrane, differentiated enterocytes and their most recent daughters. The identification of Drosophila intestinal stem cells with striking similarities to their vertebrate counterparts will facilitate the genetic analysis of normal and abnormal intestinal function.  相似文献   

4.
Stem cell self-renewal implies proliferation under continued maintenance of multipotency. Small changes in numbers of stem cells may lead to large differences in differentiated cell numbers, resulting in significant physiological consequences. Proliferation is typically regulated in the G1 phase, which is associated with differentiation and cell cycle arrest. However, embryonic stem (ES) cells may lack a G1 checkpoint. Regulation of proliferation in the 'DNA damage' S/G2 cell cycle checkpoint pathway is known for its role in the maintenance of chromatin structural integrity. Here we show that autocrine/paracrine gamma-aminobutyric acid (GABA) signalling by means of GABA(A) receptors negatively controls ES cell and peripheral neural crest stem (NCS) cell proliferation, preimplantation embryonic growth and proliferation in the boundary-cap stem cell niche, resulting in an attenuation of neuronal progenies from this stem cell niche. Activation of GABA(A) receptors leads to hyperpolarization, increased cell volume and accumulation of stem cells in S phase, thereby causing a rapid decrease in cell proliferation. GABA(A) receptors signal through S-phase checkpoint kinases of the phosphatidylinositol-3-OH kinase-related kinase family and the histone variant H2AX. This signalling pathway critically regulates proliferation independently of differentiation, apoptosis and overt damage to DNA. These results indicate the presence of a fundamentally different mechanism of proliferation control in these stem cells, in comparison with most somatic cells, involving proteins in the DNA damage checkpoint pathway.  相似文献   

5.
Notch signalling controls pancreatic cell differentiation.   总被引:46,自引:0,他引:46  
The pancreas contains both exocrine and endocrine cells, but the molecular mechanisms controlling the differentiation of these cell types are largely unknown. Despite their endodermal origin, pancreatic endocrine cells share several molecular characteristics with neurons, and, like neurons in the central nervous system, differentiating endocrine cells in the pancreas appear in a scattered fashion within a field of progenitor cells. This indicates that they may be generated by lateral specification through Notch signalling. Here, to test this idea, we analysed pancreas development in mice genetically altered at several steps in the Notch signalling pathway. Mice deficient for Delta-like gene 1 (Dll1) or the intracellular mediator RBP-Jkappa showed accelerated differentiation of pancreatic endocrine cells. A similar phenotype was observed in mice over-expressing neurogenin 3 (ngn 3) or the intracellular form of Notch3 (a repressor of Notch signalling). These data provide evidence that ngn3 acts as proendocrine gene and that Notch signalling is critical for the decision between the endocrine and progenitor/exocrine fates in the developing pancreas.  相似文献   

6.
The Notch signalling pathway plays a crucial role in specifying cellular fates in metazoan development by regulating communication between adjacent cells. Correlative studies suggested an involvement of Notch in intestinal development. Here, by modulating Notch activity in the mouse intestine, we directly implicate Notch signals in intestinal cell lineage specification. We also show that Notch activation is capable of amplifying the intestinal progenitor pool while inhibiting cell differentiation. We conclude that Notch activity is required for the maintenance of proliferating crypt cells in the intestinal epithelium.  相似文献   

7.
Siekmann AF  Lawson ND 《Nature》2007,445(7129):781-784
Recent evidence indicates that growing blood-vessel sprouts consist of endothelial cells with distinct cell fates and behaviours; however, it is not clear what signals determine these sprout cell characteristics. Here we show that Notch signalling is necessary to restrict angiogenic cell behaviour to tip cells in developing segmental arteries in the zebrafish embryo. In the absence of the Notch signalling component Rbpsuh (recombining binding protein suppressor of hairless) we observed excessive sprouting of segmental arteries, whereas Notch activation suppresses angiogenesis. Through mosaic analysis we find that cells lacking Rbpsuh preferentially localize to the terminal position in developing sprouts. In contrast, cells in which Notch signalling has been activated are excluded from the tip-cell position. In vivo time-lapse analysis reveals that endothelial tip cells undergo a stereotypical pattern of proliferation and migration during sprouting. In the absence of Notch, nearly all sprouting endothelial cells exhibit tip-cell behaviour, leading to excessive numbers of cells within segmental arteries. Furthermore, we find that flt4 (fms-related tyrosine kinase 4, also called vegfr3) is expressed in segmental artery tip cells and becomes ectopically expressed throughout the sprout in the absence of Notch. Loss of flt4 can partially restore normal endothelial cell number in Rbpsuh-deficient segmental arteries. Finally, loss of the Notch ligand dll4 (delta-like 4) also leads to an increased number of endothelial cells within segmental arteries. Together, these studies indicate that proper specification of cell identity, position and behaviour in a developing blood-vessel sprout is required for normal angiogenesis, and implicate the Notch signalling pathway in this process.  相似文献   

8.
The generation of new neurons from neural stem cells is restricted to two regions of the adult mammalian central nervous system: the subventricular zone of the lateral ventricle, and the subgranular zone of the hippocampal dentate gyrus. In both regions, signals provided by the microenvironment regulate the maintenance, proliferation and neuronal fate commitment of the local stem cell population. The identity of these signals is largely unknown. Here we show that adult hippocampal stem/progenitor cells (AHPs) express receptors and signalling components for Wnt proteins, which are key regulators of neural stem cell behaviour in embryonic development. We also show that the Wnt/beta-catenin pathway is active and that Wnt3 is expressed in the hippocampal neurogenic niche. Overexpression of Wnt3 is sufficient to increase neurogenesis from AHPs in vitro and in vivo. By contrast, blockade of Wnt signalling reduces neurogenesis from AHPs in vitro and abolishes neurogenesis almost completely in vivo. Our data show that Wnt signalling is a principal regulator of adult hippocampal neurogenesis and provide evidence that Wnt proteins have a role in adult hippocampal function.  相似文献   

9.
Lin G  Xu N  Xi R 《Nature》2008,455(7216):1119-1123
In the Drosophila midgut, multipotent intestinal stem cells (ISCs) that are scattered along the epithelial basement membrane maintain tissue homeostasis by their ability to steadily produce daughters that differentiate into either enterocytes or enteroendocrine cells, depending on the levels of Notch activity. However, the mechanisms controlling ISC self-renewal remain elusive. Here we show that a canonical Wnt signalling pathway controls ISC self-renewal. The ligand Wingless (Wg) is specifically expressed in the circular muscles next to ISCs, separated by a thin layer of basement membrane. Reduced function of wg causes ISC quiescence and differentiation, whereas wg overexpression produces excessive ISC-like cells that express high levels of the Notch ligand, Delta. Clonal analysis shows that the main downstream components of the Wg pathway, including Frizzled, Dishevelled and Armadillo, are autonomously required for ISC self-renewal. Furthermore, epistatic analysis suggests that Notch acts downstream of the Wg pathway and a hierarchy of Wg/Notch signalling pathways controls the balance between self-renewal and differentiation of ISCs. These data suggest that the underlying circular muscle constitutes the ISC niche, which produce Wg signals that act directly on ISCs to promote ISC self-renewal. This study demonstrates markedly conserved mechanisms regulating ISCs from Drosophila to mammals. The identification of the Drosophila ISC niche and the principal self-renewal signal will facilitate further understanding of intestinal homeostasis control and tumorigenesis.  相似文献   

10.
11.
12.
Mizutani K  Yoon K  Dang L  Tokunaga A  Gaiano N 《Nature》2007,449(7160):351-355
During brain development, neurons and glia are generated from a germinal zone containing both neural stem cells (NSCs) and more limited intermediate neural progenitors (INPs). The signalling events that distinguish between these two proliferative neural cell types remain poorly understood. The Notch signalling pathway is known to maintain NSC character and to inhibit neurogenesis, although little is known about the role of Notch signalling in INPs. Here we show that both NSCs and INPs respond to Notch receptor activation, but that NSCs signal through the canonical Notch effector C-promoter binding factor 1 (CBF1), whereas INPs have attenuated CBF1 signalling. Furthermore, whereas knockdown of CBF1 promotes the conversion of NSCs to INPs, activation of CBF1 is insufficient to convert INPs back to NSCs. Using both transgenic and transient in vivo reporter assays we show that NSCs and INPs coexist in the telencephalic ventricular zone and that they can be prospectively separated on the basis of CBF1 activity. Furthermore, using in vivo transplantation we show that whereas NSCs generate neurons, astrocytes and oligodendrocytes at similar frequencies, INPs are predominantly neurogenic. Together with previous work on haematopoietic stem cells, this study suggests that the use or blockade of the CBF1 cascade downstream of Notch is a general feature distinguishing stem cells from more limited progenitors in a variety of tissues.  相似文献   

13.
Wnt signalling in stem cells and cancer   总被引:3,自引:0,他引:3  
Reya T  Clevers H 《Nature》2005,434(7035):843-850
The canonical Wnt cascade has emerged as a critical regulator of stem cells. In many tissues, activation of Wnt signalling has also been associated with cancer. This has raised the possibility that the tightly regulated self-renewal mediated by Wnt signalling in stem and progenitor cells is subverted in cancer cells to allow malignant proliferation. Insights gained from understanding how the Wnt pathway is integrally involved in both stem cell and cancer cell maintenance and growth in the intestinal, epidermal and haematopoietic systems may serve as a paradigm for understanding the dual nature of self-renewal signals.  相似文献   

14.
Haploinsufficiency of Dll4, a vascular-specific Notch ligand, has shown that it is essential for embryonic vascular development and arteriogenesis. Mechanistically, it is unclear how the Dll4-mediated Notch pathway contributes to complex vascular processes that demand meticulous coordination of multiple signalling pathways. Here we show that Dll4-mediated Notch signalling has a unique role in regulating endothelial cell proliferation and differentiation. Neutralizing Dll4 with a Dll4-selective antibody rendered endothelial cells hyperproliferative, and caused defective cell fate specification or differentiation both in vitro and in vivo. In addition, blocking Dll4 inhibited tumour growth in several tumour models. Remarkably, antibodies against Dll4 and antibodies against vascular endothelial growth factor (VEGF) had paradoxically distinct effects on tumour vasculature. Our data also indicate that Dll4-mediated Notch signalling is crucial during active vascularization, but less important for normal vessel maintenance. Furthermore, unlike blocking Notch signalling globally, neutralizing Dll4 had no discernable impact on intestinal goblet cell differentiation, supporting the idea that Dll4-mediated Notch signalling is largely restricted to the vascular compartment. Therefore, targeting Dll4 might represent a broadly efficacious and well-tolerated approach for the treatment of solid tumours.  相似文献   

15.
Osteoblastic cells regulate the haematopoietic stem cell niche   总被引:2,自引:0,他引:2  
Stem cell fate is influenced by specialized microenvironments that remain poorly defined in mammals. To explore the possibility that haematopoietic stem cells derive regulatory information from bone, accounting for the localization of haematopoiesis in bone marrow, we assessed mice that were genetically altered to produce osteoblast-specific, activated PTH/PTHrP receptors (PPRs). Here we show that PPR-stimulated osteoblastic cells that are increased in number produce high levels of the Notch ligand jagged 1 and support an increase in the number of haematopoietic stem cells with evidence of Notch1 activation in vivo. Furthermore, ligand-dependent activation of PPR with parathyroid hormone (PTH) increased the number of osteoblasts in stromal cultures, and augmented ex vivo primitive haematopoietic cell growth that was abrogated by gamma-secretase inhibition of Notch activation. An increase in the number of stem cells was observed in wild-type animals after PTH injection, and survival after bone marrow transplantation was markedly improved. Therefore, osteoblastic cells are a regulatory component of the haematopoietic stem cell niche in vivo that influences stem cell function through Notch activation. Niche constituent cells or signalling pathways provide pharmacological targets with therapeutic potential for stem-cell-based therapies.  相似文献   

16.
Cancer stem cells, which share many common properties and regulatory machineries with normal stem cells, have recently been proposed to be responsible for tumorigenesis and to contribute to cancer resistance. The main challenges in cancer biology are to identify cancer stem cells and to define the molecular events required for transforming normal cells to cancer stem cells. Here we show that Pten deletion in mouse haematopoietic stem cells leads to a myeloproliferative disorder, followed by acute T-lymphoblastic leukaemia (T-ALL). Self-renewable leukaemia stem cells (LSCs) are enriched in the c-Kit(mid)CD3(+)Lin(-) compartment, where unphosphorylated beta-catenin is significantly increased. Conditional ablation of one allele of the beta-catenin gene substantially decreases the incidence and delays the occurrence of T-ALL caused by Pten loss, indicating that activation of the beta-catenin pathway may contribute to the formation or expansion of the LSC population. Moreover, a recurring chromosomal translocation, T(14;15), results in aberrant overexpression of the c-myc oncogene in c-Kit(mid)CD3(+)Lin(-) LSCs and CD3(+) leukaemic blasts, recapitulating a subset of human T-ALL. No alterations in Notch1 signalling are detected in this model, suggesting that Pten inactivation and c-myc overexpression may substitute functionally for Notch1 abnormalities, leading to T-ALL development. Our study indicates that multiple genetic or molecular alterations contribute cooperatively to LSC transformation.  相似文献   

17.
The Drosophila melanogaster lymph gland is a haematopoietic organ in which pluripotent blood cell progenitors proliferate and mature into differentiated haemocytes. Previous work has defined three domains, the medullary zone, the cortical zone and the posterior signalling centre (PSC), within the developing third-instar lymph gland. The medullary zone is populated by a core of undifferentiated, slowly cycling progenitor cells, whereas mature haemocytes comprising plasmatocytes, crystal cells and lamellocytes are peripherally located in the cortical zone. The PSC comprises a third region that was first defined as a small group of cells expressing the Notch ligand Serrate. Here we show that the PSC is specified early in the embryo by the homeotic gene Antennapedia (Antp) and expresses the signalling molecule Hedgehog. In the absence of the PSC or the Hedgehog signal, the precursor population of the medullary zone is lost because cells differentiate prematurely. We conclude that the PSC functions as a haematopoietic niche that is essential for the maintenance of blood cell precursors in Drosophila. Identification of this system allows the opportunity for genetic manipulation and direct in vivo imaging of a haematopoietic niche interacting with blood precursors.  相似文献   

18.
Williams SE  Beronja S  Pasolli HA  Fuchs E 《Nature》2011,470(7334):353-358
Stem and progenitor cells use asymmetric cell divisions to balance proliferation and differentiation. Evidence from invertebrates shows that this process is regulated by proteins asymmetrically distributed at the cell cortex during mitosis: Par3-Par6-aPKC, which confer polarity, and Gα(i)-LGN/AGS3-NuMA-dynein/dynactin, which govern spindle positioning. Here we focus on developing mouse skin, where progenitor cells execute a switch from symmetric to predominantly asymmetric divisions concomitant with stratification. Using in vivo skin-specific lentiviral RNA interference, we investigate spindle orientation regulation and provide direct evidence that LGN (also called Gpsm2), NuMA and dynactin (Dctn1) are involved. In compromising asymmetric cell divisions, we uncover profound defects in stratification, differentiation and barrier formation, and implicate Notch signalling as an important effector. Our study demonstrates the efficacy of applying RNA interference in vivo to mammalian systems, and the ease of uncovering complex genetic interactions, here to gain insights into how changes in spindle orientation are coupled to establishing proper tissue architecture during skin development.  相似文献   

19.
The primary role of cytokines in haemato-lymphopoiesis is thought to be the regulation of cell growth and survival. But the instructive action of cytokines in haematopoiesis has not been well addressed. Here we show that a clonogenic common lymphoid progenitor, a bone marrow-resident cell that gives rise exclusively to lymphocytes (T, B and natural killer cells), can be redirected to the myeloid lineage by stimulation through exogenously expressed interleukin (IL)-2 and GM-CSF (granulocyte/macrophage colony-stimulating factor) receptors. Analysis of mutants of the beta-chain of the IL-2 receptor revealed that the granulocyte- and monocyte-differentiation signals are triggered by different cytoplasmic domains, showing that the signalling pathway(s) responsible for these unique developmental outcomes are separable. Finally, we show that the endogenous myelomonocytic cytokine receptors for GM-CSF and macrophage colony-stimulating factor (M-CSF) are expressed at low to moderate levels on the more primitive haematopoietic stem cells, are absent on common lymphoid progenitors, and are upregulated after myeloid lineage induction by IL-2. We conclude that cytokine signalling can regulate cell-fate decisions and propose that a critical step in lymphoid commitment is downregulation of cytokine receptors that drive myeloid cell development.  相似文献   

20.
Embryonic signalling pathways regulate progenitor cell fates in mammalian epithelial development and cancer. Prompted by the requirement for sonic hedgehog (Shh) signalling in lung development, we investigated a role for this pathway in regeneration and carcinogenesis of airway epithelium. Here we demonstrate extensive activation of the hedgehog (Hh) pathway within the airway epithelium during repair of acute airway injury. This mode of Hh signalling is characterized by the elaboration and reception of the Shh signal within the epithelial compartment, and immediately precedes neuroendocrine differentiation. We reveal a similar pattern of Hh signalling in airway development during normal differentiation of pulmonary neuroendocrine precursor cells, and in a subset of small-cell lung cancer (SCLC), a highly aggressive and frequently lethal human tumour with primitive neuroendocrine features. These tumours maintain their malignant phenotype in vitro and in vivo through ligand-dependent Hh pathway activation. We propose that some types of SCLC might recapitulate a critical, Hh-regulated event in airway epithelial differentiation. This requirement for Hh pathway activation identifies a common lethal malignancy that may respond to pharmacological blockade of the Hh signalling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号