首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
令G=(V,E)是一个图,M是边集E(G)的子集,如果有e∈E(G)/M,e至少与M中一条边相连,则称M为图G的边控制集,进一步,若M是匹配,则称M为图G独立边控制集,本文给出关于边控制集的一些结论。(1)设图H,S是两中连勇图,且H,S∈ж,γe(S)=1,M和M′={uv}分别是图H和S的唯一最小边控制集,其中S是图1中的(G1,G2,G3,G4)四个图之一,对任何点x∈V(S)={u,v},y∈V(H)-V(M),令G=H(y=s)S,则G∈ж,(2)如果连通图G≠K2,G∈ж,γe(G)=k,则存在G的两个连通于图H,S和某两个正整数l,m使H∈ж,S∈ж,且γe(H)=k-l,γe(S)=l,G≌H(yi=xi)S,其中l≤i≤m.  相似文献   

2.
G(V,E)是一个图且D包含于V,如果N[D]=V,则称D为图G的控制集,进一步,对任一个控制集D1而言均有γ((D))≤γ((D1))成立,则称D为图G的小控制集,且小控制数γL(G)=min{|D|:D包含于V且D是G的一个小控制集}。如果点集S包含于V,A↓X∈V均有N(X)∩S≠φ或∪↑x∈SN(x)=V,则称S为图G的全控制集,且全控制数γ1(G)=min{|S|:S是G的一个全控制集}。  相似文献   

3.
图的独立数是图论中的重要参数,令G=(V(G),E(G))是一个简单有限无向图.如果V(G)的子集S中任意两个顶点均不相邻,则S是图G的一个独立集.顶点独立集大小的最大值,称为图G的独立数,记做α(G).研究了路径幂图、Flower Snark及其相关图、多锥图的独立数问题,首先构造出了它们的独立集,得到其独立数的下界,然后证明了该值也是其独立数的上界,并给出了它们独立数的准确值.  相似文献   

4.
G(V,E)是一个图且D包含于V,如果N[D]=V,则称D为图G的控制集,进一步,对任一个控制集D1而言均有γ((D))≤γ((D1))成立,则称D为图G的小控制集,且小控制数γL(G)=min{|D|:D包含于V且D是G的一个小控制集}。如果点集S包含于V,A↓X∈V均有N(X)∩S≠φ或∪↑x∈SN(x)=V,则称S为图G的全控制集,且全控制数γ1(G)=min{|S|:S是G的一个全控制集}。  相似文献   

5.
设G=(V(G),E(G))为有限简单图,X是V(G)的子集.若X中任意两个点不相邻则称X是独立集.用core(G)表示G的所有最大独立集的交.X的差是指X的顶点数与其邻集的顶点数之差.在G的所有顶点子集中,差最大的子集即为G的临界集.用ker(G)表示G的所有临界集的交.在图G中,core(G)?ker(G);当图G为二部图时,则core(G)=ker(G).本文刻画了一类单圈图G的core(G)=ker(G)的结构.  相似文献   

6.
如果V\S中的每一个点都与S中的至少一个点相邻,我们称V的子集S是G=(V,E)的一个控制集.G的控制数是G的最小控制集的基数.许多类型图的控制数及其算法已经被研究,通常这些图都有某种树型结构.本文将确定广义Petersen图当n=3k时的控制数,且其控制数为[5n/9].  相似文献   

7.
连通、几乎局部连通拟无爪图是完全圈可扩的   总被引:3,自引:0,他引:3  
G是一个图,B(G)表示G中所有局部不连通的点构成的集合。如果B(G)是独立集,并且对任意v∈B(G),Eu∈V(G),使G[N(v)∪{u}]连通,则称G是几乎局部连通的。如果G中所有爪心构成的集合D(G)是独立集,并且对任意v∈D(G),G[N(v)]是强2-控制的,则称G是拟无爪图。本文证明:连通、几乎局部连通的拟无爪图是完全圈可扩的。  相似文献   

8.
本文引进斥负集点、斥零集点新概念.并利用这些概念研究出顶点子集X 是只有形如NG(v)最小断集的图G的负集的充要条件是:1°X 包含图G中所有度等于K(G)的顶点;2°图G不包含关于X的斥负集点;3°NG(X)中的任意点U, ,K 表示U与X相邻的顶点数,同时指出Y是图G的非特殊零集的充要条件.  相似文献   

9.
关于哈密尔顿图和哈密尔顿连通的两个基本结果是Ore给出的:设G是一个n(n≥3)阶图,如果对于G的任意一对不相邻顶点u,v,有d(u) d(v)≥n或n 1,则G是哈密尔顿图或哈密尔顿连通的.设G是一个图,对于任意u∈V(G),令N(u)表示u的邻点集;对于任意U∈V(G),令N(U)=∪u∈UN(u).本文利用插点方法,给出了关于k或(k 1)-连通图(k≥2)G是哈密尔顿的,哈密尔顿连通的或1-哈密尔顿的统一证明.其充分条件是关于|N(S)| |N(T)|与n(S ∪T)的不等式,这里S,T是图G的任意两个不交的独立集,并且|S|=s,|T|=1,S∪T也是一个独立集,这里n(S∪T)=|{v∈V(G):dist(v,S∪T)≤2}|.  相似文献   

10.
设G为n阶2-连通图,α为G的独立数.如果对于G中任意3个顶点的独立集{v_1,v_2,v_3}都有d(v_1)+d(v_2)+d(v_3)≥max{n+2,3α-2},则G是Hamilton-图。  相似文献   

11.
设G=V(V,E)是一个简单无向图.一个点悬挂三个一度点的图称为爪图,D图是一个三角形其中两个点各悬挂一条长为2的路.如果图G的任何导出子图都不同构于爪图也不同构于D图,则称G为无爪和无D图.设S是V的非空子集,如果不在S的点一定与S中的某个点相邻,则称S为G的控制集.如果G中的点一定与S中的某个点相邻,则S称为G的全控制集.最小全控制集包含顶点的数目称为全控制数.给出了当G是N阶连通的无爪和无D图时全控制数紧的上界.  相似文献   

12.
给定图G=(V,E),S是V的任意一个非空子集,如果对所有的v∈V-S,集合I(v)=N[v]∩S都是非空且是两两不同的, 那么称S是G的一个定位控制集.如果当S中所有的装置都传送正确的监测信息值0,1或2,或者仅有一个装置错误地传送数值0而不是1或2时,它都能测定出V中任何一个错误的处理器w,那么称S是G的一个容错定位控制集.研究了容错定位控制集,给出了容错定位控制集在几类有限图和无限三角形格子图中的一些界.  相似文献   

13.
设G=(V,E)是一个简单图,D是V的一个子集,如果集合V-D的任意点都与D中的点相邻,则称D为图G的一个控制集.图G的最小控制集中的点数称为G的控制数.本文对哈密顿图的控制数进行了研究,证明了命题:如果n阶图G是一个最小度为5的哈密顿图,则图G的控制数就不大于5n/14.  相似文献   

14.
令图G是无孤立点的无向图.V(G)是图G的顶点集,D是V(G)的真子集.如果图G的每一个顶点至少与集合D中一点相邻,则集合D是图G的全控制集.G中最小全控制集的顶点数称为G的全控制数,记为γt(G).参考已有全控制数的知识及笛卡尔乘积Cm□Cn、Pm□Pn的全控制数的相关结论,利用γt(Cm□Cn)≤γt(Pm□Cn)≤γt(Pm□Pn)这一不等式给出了Cm□Pn(m=3,4)、Pm□Cn(n=2,4)的全控制数.  相似文献   

15.
研究一些特殊图类的弱控制多项式.令图G=(V(G),E(G))是一个简单连通图,若对任意v∈V(G),存在u∈V(G),使得uv∈E(G)且d(u)≥d(v)成立,则称v弱控制u.设W(G)?V(G),如果对任意u∈V(G)W(G),存在v∈W(G),使得v弱控制u,则称W(G)为图G的一个弱控制集.含点数最少的弱控制集称为最小弱控制集,最小弱控制集中所包含点的个数称为图G的弱控制数,记为γwd(G).图G的弱控制多项式为WD(G,x)=■Wd(G,j)xj,其中Wd(G,j)表示图G中阶为j的弱控制集的个数.  相似文献   

16.
对于图G内的任意两点u和v,u-v测地线是指在u和v之间的最短路.I(u,v)表示位于一条u-v测地线上所有点的集合,对于S包含V(G),I(S)表示所有,(u,v)的并。这里u,u∈S.G的测地数g(G)是使I(S)=V(G)的最小点集S的基数.图的每个最小测地集都不包括它的割点,如果图G是一个有n≥3个顶点,k≥1个割点的块图.那么g(G)=n-k.树T有n≥2个顶点,l片叶子。如果将树T的所有点ui用图Hi来代替。用Hi∨Hj来代替树T的所有边uivj∈E(T),将得到的新图定义为Tn(H)。有g(Ta(Kd))=ld和g(Tm(Cd))≤min{[d/2]l。2(n-l)}/.  相似文献   

17.
如果图G的补图(-overG)是d-退化图,则称图G是反d-退化图。证明了当|G|=3k且δ(G)≥k≥26d时,反d-退化图G包含k个点不交的3-圈,其中d≥2。  相似文献   

18.
设图G的顶点集为{v_1,v_2,…,v_n}.G的途径矩阵D(G)=(d_(ij)是n阶方阵,此处d_(ij)是G中从v_i出发长为j的途径数,D(G)的行向量集X的子集{x_1,x_2,…,x_r}称为X的最小线性相关集,如果{x_1,x_2,…x_r}线性相关且对X的任一(r-1)之子集均是线性无关.称数r为G的最小线性相关数.当X线性无关时,定义G的最小线性相关数r=∞.对1≤i≤n,记d_i为点v_i在G中的次,G_i是图G剔除点v_i以及与v_i关联的边而得到子图.设r_i是G_i的最小线性相关数,我们有下列定理:如果存在某一数i使r_i>2d_i,则G是可重构的.特别,我们重新得到下述结果:如果存在某一子图G_i,使得G_i的所有特征向量均不与C=(1,…,1)_t正交,则G是可重构的.  相似文献   

19.
讨论了OF-(-2)型图和OF-(-3)型图的有关性质,得到下列结果:(1)2n阶OF-(-3)型图中含有子图(n—1)K_2;(2)若2n阶OF-(-2)型图G中不存在1—因子,则G具有性质i)V_δ是有n+1个顶点的独立点集,ii)任给w,z∈V_δ,G—{w,z}中存在(n—1)个边不交1—因子,其中V_δ={v∈V(G)|d(v)=δ(G)}.结果(1)部分地改进了J.A.Bondy等人的一个结果。  相似文献   

20.
设图G的顶点集为{u_1,u_2,…,u_n}。G的途径矩阵D(G):(d_(ij)是n阶方阵,此处d_(ij)是G中从u_i出发长为j的途径数,D(G)的行向量集X的子集{x_1,x_2,…,x_r}称为X的最小线性相关集,如果{x_1,x_2,…x_r}线性相关且对x的任一(r-1)之子集均是线性无关。称数r为G的最小线性相关数。当X线性无关时,定义G的最小线性相关数r=∞。对1≤i≤n,记d_i为点u_i在G中的次,G_i是图G剔除点u_i以及与u_i关联的边而得到子图。设r_i是G_i的最小线性相关数,我们有下列定理:如果存在某一数i使r_i>2d_i,则G是可重构的。特别,我们重新得到下述结果:如果存在某一子图G_,使得G_i的所有特征向量均不与C=(1,…,1)~t正交,则G是可重构的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号