首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 673 毫秒
1.
Brandt P  Funk A  Hormann V  Dengler M  Greatbatch RJ  Toole JM 《Nature》2011,473(7348):497-500
Climate variability in the tropical Atlantic Ocean is determined by large-scale ocean-atmosphere interactions, which particularly affect deep atmospheric convection over the ocean and surrounding continents. Apart from influences from the Pacific El Ni?o/Southern Oscillation and the North Atlantic Oscillation, the tropical Atlantic variability is thought to be dominated by two distinct ocean-atmosphere coupled modes of variability that are characterized by meridional and zonal sea-surface-temperature gradients and are mainly active on decadal and interannual timescales, respectively. Here we report evidence that the intrinsic ocean dynamics of the deep equatorial Atlantic can also affect sea surface temperature, wind and rainfall in the tropical Atlantic region and constitutes a 4.5-yr climate cycle. Specifically, vertically alternating deep zonal jets of short vertical wavelength with a period of about 4.5?yr and amplitudes of more than 10?cm?s(-1) are observed, in the deep Atlantic, to propagate their energy upwards, towards the surface. They are linked, at the sea surface, to equatorial zonal current anomalies and eastern Atlantic temperature anomalies that have amplitudes of about 6?cm?s(-1) and 0.4?°C, respectively, and are associated with distinct wind and rainfall patterns. Although deep jets are also observed in the Pacific and Indian oceans, only the Atlantic deep jets seem to oscillate on interannual timescales. Our knowledge of the persistence and regularity of these jets is limited by the availability of high-quality data. Despite this caveat, the oscillatory behaviour can still be used to improve predictions of sea surface temperature in the tropical Atlantic. Deep-jet generation and upward energy transmission through the Equatorial Undercurrent warrant further theoretical study.  相似文献   

2.
Empirical orthogonal function (EOF) analysis is carried out for the year-to-year variability of the boreal winter (DJF) mass stream function of the mean meridional circulation (MMC) during the period 1948—2005. The results demonstrate that it is dominated by the equatorially asymmetric and symmetric modes. Further analysis shows that the former mode is linked with the boreal winter Hadley cell mainly on the decadal time-scale, and the latter on the interannual time-scale. The asymmetric mode index (AMI) with a clear upward trend contributes to the decadal strengthening of the boreal Hadley circulation, and is closely correlated with the tropical SST warming, especially in the region of Indo-west Pacific warm pool (INWP). Furthermore, the AMI also contributes to the abrupt change of the correlation coefficient between the boreal Hadley circulation and ENSO after 1976. The symmetric mode index (SMI) with robust and stable linkage with ENSO shows a significant interannual variability, suggesting that the variability of the Hadley circulation is mainly associated with ENSO on the interannual time-scale.  相似文献   

3.
Reversed flow of Atlantic deep water during the Last Glacial Maximum   总被引:1,自引:0,他引:1  
The meridional overturning circulation (MOC) of the Atlantic Ocean is considered to be one of the most important components of the climate system. This is because its warm surface currents, such as the Gulf Stream, redistribute huge amounts of energy from tropical to high latitudes and influence regional weather and climate patterns, whereas its lower limb ventilates the deep ocean and affects the storage of carbon in the abyss, away from the atmosphere. Despite its significance for future climate, the operation of the MOC under contrasting climates of the past remains controversial. Nutrient-based proxies and recent model simulations indicate that during the Last Glacial Maximum the convective activity in the North Atlantic Ocean was much weaker than at present. In contrast, rate-sensitive radiogenic (231)Pa/(230)Th isotope ratios from the North Atlantic have been interpreted to indicate only minor changes in MOC strength. Here we show that the basin-scale abyssal circulation of the Atlantic Ocean was probably reversed during the Last Glacial Maximum and was dominated by northward water flow from the Southern Ocean. These conclusions are based on new high-resolution data from the South Atlantic Ocean that establish the basin-scale north to south gradient in (231)Pa/(230)Th, and thus the direction of the deep ocean circulation. Our findings are consistent with nutrient-based proxies and argue that further analysis of (231)Pa/(230)Th outside the North Atlantic basin will enhance our understanding of past ocean circulation, provided that spatial gradients are carefully considered. This broader perspective suggests that the modern pattern of the Atlantic MOC-with a prominent southerly flow of deep waters originating in the North Atlantic-arose only during the Holocene epoch.  相似文献   

4.
Links between annual, Milankovitch and continuum temperature variability   总被引:1,自引:0,他引:1  
Huybers P  Curry W 《Nature》2006,441(7091):329-332
Climate variability exists at all timescales-and climatic processes are intimately coupled, so that understanding variability at any one timescale requires some understanding of the whole. Records of the Earth's surface temperature illustrate this interdependence, having a continuum of variability following a power-law scaling. But although specific modes of interannual variability are relatively well understood, the general controls on continuum variability are uncertain and usually described as purely stochastic processes. Here we show that power-law relationships of surface temperature variability scale with annual and Milankovitch-period (23,000- and 41,000-year) cycles. The annual cycle corresponds to scaling at monthly to decadal periods, while millennial and longer periods are tied to the Milankovitch cycles. Thus the annual, Milankovitch and continuum temperature variability together represent the response to deterministic insolation forcing. The identification of a deterministic control on the continuum provides insight into the mechanisms governing interannual and longer-period climate variability.  相似文献   

5.
Olsen SM  Hansen B  Quadfasel D  Østerhus S 《Nature》2008,455(7212):519-522
Across the Greenland-Scotland ridge there is a continuous flow of cold dense water, termed 'overflow', from the Nordic seas to the Atlantic Ocean. This is a main contributor to the production of North Atlantic Deep Water that feeds the lower limb of the Atlantic meridional overturning circulation, which has been predicted to weaken as a consequence of climate change. The two main overflow branches pass the Denmark Strait and the Faroe Bank channel. Here we combine results from direct current measurements in the Faroe Bank channel for 1995-2005 with an ensemble hindcast experiment for 1948-2005 using an ocean general circulation model. For the overlapping period we find a convincing agreement between model simulations and observations on monthly to interannual timescales. Both observations and model data show no significant trend in volume transport. In addition, for the whole 1948-2005 period, the model indicates no persistent trend in the Faroe Bank channel overflow or in the total overflow transport, in agreement with the few available historical observations. Deepening isopycnals in the Norwegian Sea have tended to decrease the pressure difference across the Greenland-Scotland ridge, but this has been compensated for by the effect of changes in sea level. In contrast with earlier studies, we therefore conclude that the Faroe Bank channel overflow, and also the total overflow, did not decrease consistently from 1950 to 2005, although the model does show a weakening total Atlantic meridional overturning circulation as a result of changes south of the Greenland-Scotland ridge.  相似文献   

6.
The East Asian summer monsoon (EASM) and its related change of surface temperature in the past century were not clearly ad- dressed due to absence of atmospheric reanalysis data before 1948. On the benchmark of station-observed sea level pressure (SLP) in China, we utilized multiple SLP datasets and evaluated their qualities in measuring the SLP-based EASM index (EASMI). It is found that the EASMI based on the SLP of the Hadley center version 2 (HadSLP2) has shown the best performance on the inter- annual and decadal time scales. Instead of showing a linear weakening trend pointed out by the previous study, the EASMI has likely exhibited the decadal variability, characterized by weakened trends during 1880-1906, 1921-1936, and 1960-2004, and with enhanced trends during 1906-1921 and 1936-1960, respectively. Corresponding to the weakened and enhanced periods of EASMI since the 1920s, the surface air temperature (SAT) index (SATI) averaged in eastern China has likely shown a warming and a cooling trend, respectively. However, the decadal abrupt transitions between the two indices do not occur concurrently, which results in a weak correlation between two indices on the decadal time scale. Further analysis indicates that there are four key regions where the SAT is significantly correlated with the EASMI, suggesting the joint impact of surface temperature in Asia-Pacific on the EASM during 1880-2004. In which, the decadal change of SAT near the Lake Baikal plays an important role in the linear trends of the EASM before and after 1960.  相似文献   

7.
Response of the Atlantic thermohaline circulation (THC) to global warming is examined by using the climate system model developed at IAP/LASG. The evidence indicates that the gradually warming climate associated with the increased atmospheric carbon dioxide leads to a warmer and fresher sea surface water at the high latitudes of the North Atlantic Ocean, which prevents the down-welling of the surface water. The succedent reduction of the pole-toequator meridional potential density gradient finally results in the decrease of the THC in intensity. When the atmospheric carbon dioxide is doubled, the maximum value of the Atlantic THC decreases approximately by 8%. The associated poleward oceanic heat transport also becomes weaker. This kind of THC weakening centralizes mainly in the northern part of the North Atlantic basin, indicating briefly a local scale adjustment rather than a loop oscillation with the whole Atlantic “conveyor belt” decelerating.  相似文献   

8.
不同平均强度热盐环流的年代际波动特征   总被引:2,自引:0,他引:2       下载免费PDF全文
基于美国国家大气研究中心的CCSM3(community climate system model version 3)模式,对淡水扰动试验下不同平均强度热盐环流(thermohline circulation,THC)的年代际波动特征及北大西洋气候响应特征进行研究。结果表明,百年以上尺度的THC变化对其年代际尺度波动产生显著影响,高平均强度下THC的年代际波动周期更长、更显著。对不同平均强度下北大西洋海、气要素与THC在年代际尺度上的相关分布进行分析,发现在高平均强度下,THC与海表温度(sea surface temperature,SST)的相关呈现为经向三核型分布,与海平面气压(sea lever pressure,SLP)的相关呈现为类NAO(North Atlantic oscillation)分布,而在低平均强度下,则不存在这2种模态分布;同时,在不同平均强度下,THC与各要素间的相关程度也不同,高平均强度下相关程度更高。  相似文献   

9.
The magnitude of heat and salt transfer between the Indian and Atlantic oceans through 'Agulhas leakage' is considered important for balancing the global thermohaline circulation. Increases or reductions of this leakage lead to strengthening or weakening of the Atlantic meridional overturning and associated variation of North Atlantic Deep Water formation. Here we show that modern Agulhas waters, which migrate into the south Atlantic Ocean in the form of an Agulhas ring, contain a characteristic assemblage of planktic foraminifera. We use this assemblage as a modern analogue to investigate the Agulhas leakage history over the past 550,000 years from a sediment record in the Cape basin. Our reconstruction indicates that Indian-Atlantic water exchange was highly variable: enhanced during present and past interglacials and largely reduced during glacial intervals. Coherent variability of Agulhas leakage with northern summer insolation suggests a teleconnection to the monsoon system. The onset of increased Agulhas leakage during late glacial conditions took place when glacial ice volume was maximal, suggesting a crucial role for Agulhas leakage in glacial terminations, timing of interhemispheric climate change and the resulting resumption of the Atlantic meridional overturning circulation.  相似文献   

10.
Advancing decadal-scale climate prediction in the North Atlantic sector   总被引:12,自引:0,他引:12  
The climate of the North Atlantic region exhibits fluctuations on decadal timescales that have large societal consequences. Prominent examples include hurricane activity in the Atlantic, and surface-temperature and rainfall variations over North America, Europe and northern Africa. Although these multidecadal variations are potentially predictable if the current state of the ocean is known, the lack of subsurface ocean observations that constrain this state has been a limiting factor for realizing the full skill potential of such predictions. Here we apply a simple approach-that uses only sea surface temperature (SST) observations-to partly overcome this difficulty and perform retrospective decadal predictions with a climate model. Skill is improved significantly relative to predictions made with incomplete knowledge of the ocean state, particularly in the North Atlantic and tropical Pacific oceans. Thus these results point towards the possibility of routine decadal climate predictions. Using this method, and by considering both internal natural climate variations and projected future anthropogenic forcing, we make the following forecast: over the next decade, the current Atlantic meridional overturning circulation will weaken to its long-term mean; moreover, North Atlantic SST and European and North American surface temperatures will cool slightly, whereas tropical Pacific SST will remain almost unchanged. Our results suggest that global surface temperature may not increase over the next decade, as natural climate variations in the North Atlantic and tropical Pacific temporarily offset the projected anthropogenic warming.  相似文献   

11.
The relationship between sea surface temperature anomaly (SSTA) and wind energy input in the Pacific Ocean over the period of 1949–2003 is studied by using daily-mean NOAA/NCEP wind stress and monthly mean Reynolds SST data. The results indicate the strong negative correlation between SSTA and local wind energy input to surface waves in most of the domain at low and middle latitudes. The SST is low (high) during the years with more (less) wind energy input. The correlation coefficients are high in the central and eastern tropical Pacific and the central midlatitude North Pacific at the decadal scale, and in the central tropical Pacific at the interannual scale. Vertical mixing processes in the upper ocean are closely associated with wind energy input, indicating that wind energy input may play an important role in interannual and decadal variability in the Pacific Ocean via regulating vertical mixing.  相似文献   

12.
The global dibtributiorls of the rale of precipitation change at seasonal, interannual and interdeadel scales are computed from the observed global data sets. The analysis has revealed that the monscnn regions in hie and West Africa, and to lesser extent Australia, have the highest rate of precipitation change at all time scales in the world. Thew changes are manifested as seasonal jump, high interannual and interdecadal variability and abrupt changes between climate regimes.  相似文献   

13.
Three variation indices are defined to objectively and quantitatively represent fluctuations of three rainfall-band patterns in summers in China for the period from 1951 to 2005, and the variation features of these indices are analyzed on both of interdecadal and interannual scales. A new method is proposed to establish an integrative estimation model based on the analysis of rainfall-band indices, and the model is applied to air, ocean factors to estimate their roles on variations of three rainfall-band patterns on different time-scales. The tests of estimation effects show that the fluctuations of three rainfall-band patterns are composed of variations on both significant inter-decadal and interannual scales, of which the interannual variation is mainly influenced by the Elnino/Lanina events, the East Asia monsoon and the ridge locations of subtropical high pressures in western pacific, while the interdecadal variation is mainly controlled by the Pacific decadal oscillation and interdecadal oscillations of the Arctic oscillation, ENSO, Nino3 sea surface temperature and summer monsoon. The estimated results from the integrative estimation model of rainfall-band patterns suggest that the way of estimation first according to each time scale of both the interdecadal and interannual scales, then estimating with an integration, which is proposed in this paper, has an obvious improvement on that without separation of time scales.  相似文献   

14.
Three variation indices are defined to objectively and quantitatively represent fluctuations of three rainfall-band patterns in summers in China for the period from 1951 to 2005, and the variation features of these indices are analyzed on both of interdecadal and interannual scales. A new method is proposed to establish an integrative estimation model based on the analysis of rainfall-band indices, and the model is applied to air, ocean factors to estimate their roles on variations of three rainfall-band patterns on different time-scales. The tests of estimation effects show that the fluctuations of three rainfall-band patterns are composed of variations on both significant inter-decadal and interannual scales, of which the interannual variation is mainly influenced by the Elnino/Lanina events, the East Asia monsoon and the ridge locations of subtropical high pressures in western pacific, while the interdecadal variation is mainly controlled by the Pacific decadal oscillation and interdecadal oscillations of the Arctic oscillation, ENSO, Nino3 sea surface temperature and summer monsoon. The estimated results from the integrative estimation model of rainfall-band patterns suggest that the way of estimation first according to each time scale of both the interdecadal and interannual scales, then estimating with an integration, which is proposed in this paper, has an obvious improvement on that without separation of time scales.  相似文献   

15.
Atmospheric oscillations over the last millennium   总被引:2,自引:0,他引:2  
The variations of global atmospheric oscillations over the last millennium, including the North Atlantic Oscillation (NAO), the North Pacific Oscillation (NPO) highly associated with the Pacific Decadal Oscillation (PDO), the Southern Oscillation (SO) and the Antarctic Oscillation (AAO), are studied and compared in this paper based on observations and reconstructed data. The cross correlation analysis of AAO, NAO and NPO shows that there is no significant relationship on interannual variation among them. However, the consistency on decadal variability is prominent. During A.D.1920–1940 and A.D.1980–2000, the positive (strong) phase was dominant and the negative (weak) one noticeable during A.D.1940–1980. In addition, the reconstructed atmospheric oscillations series demonstrate that the positive phase existed in the early of the last millennium for NAO and in the late of the last millennium for AAO, respectively; while it occurred in the mid-late of the last millennium for PDO and ENSO.  相似文献   

16.
DAI Yi  LU RiYu 《科学通报(英文版)》2013,58(12):1436-1442
The authors analyzed the interannual variability in summer precipitation and the East Asian upper-tropospheric jet (EAJ) over East Asia under the Historical and Representative Concentration Pathways Scenarios (RCPs, including RCP4.5 and RCP8.5), using outputs of 17 Coupled Model Intercomparison Project phase 5 (CMIP5) coupled models. The analyzed results indicate that the models can reasonably reproduce relatively stronger interannual variability in both East Asian summer rainfall (EASR) and EAJ. These models can also capture the relationship between the rainfall anomaly along the East Asian rain belt and meridional displacement of the EAJ. Projected results suggest that the interannual variabilities in precipitation along the East Asian rain belt and in the EAJ are enhanced under the scenarios RCP4.5 and RCP8.5 in the 21st century, which is consistent with the previous studies. Furthermore, it is found that the relationship between the East Asian rainfall and the meridional displacement of the EAJ is projected to be stronger in the 21st century under the global warming scenarios, although there are appreciable discrepancies among the models.  相似文献   

17.
The Atlantic meridional overturning circulation is widely believed to affect climate. Changes in ocean circulation have been inferred from records of the deep water chemical composition derived from sedimentary nutrient proxies, but their impact on climate is difficult to assess because such reconstructions provide insufficient constraints on the rate of overturning. Here we report measurements of 231Pa/230Th, a kinematic proxy for the meridional overturning circulation, in a sediment core from the subtropical North Atlantic Ocean. We find that the meridional overturning was nearly, or completely, eliminated during the coldest deglacial interval in the North Atlantic region, beginning with the catastrophic iceberg discharge Heinrich event H1, 17,500 yr ago, and declined sharply but briefly into the Younger Dryas cold event, about 12,700 yr ago. Following these cold events, the 231Pa/230Th record indicates that rapid accelerations of the meridional overturning circulation were concurrent with the two strongest regional warming events during deglaciation. These results confirm the significance of variations in the rate of the Atlantic meridional overturning circulation for abrupt climate changes.  相似文献   

18.
The commonality and difference in the variations of temperature and precipitation between the Northern Hemisphere (NH) and Southern Hemispheres (SH) in the last millennium are investigated by analysis of the millennium simulation with the ECHO-G coupled climate model. The NH mean temperature variations are generally consistent with those of the SH counterpart on the interannual, decadal and centennial time scales. But, the transition times between the medieval warm period (MWP), the little ice age (LIA), and the present-day warm period (PWP) in the NH leads that in the SH; and the anomaly amplitude in the NH is significantly larger than the SH counterpart. For the precipitation variations, the NH mean precipitation varies in-phase with the SH mean precipitation on decadal and centennial scales (mainly in the mid-high latitudes) but out-of-phase on the interannual scale (mainly in the low latitudes). During the MWP the warming has comparable amplitude in the NH and SH; however, during the PWP the NH warming is considerably stronger than the SH warming. Further, the present-day temperature rises in the NH high latitudes but decreases in the SH high latitudes, which is very different from the warming pattern during the MWP. Since during the MWP the greenhouse gases (GHG) concentration stayed at a low level, we infer that the present-day opposite temperature tendency in the high latitudes between the two hemispheres may be related to the increase of the GHG concentration.  相似文献   

19.
Features of an extra-strong warm winter event in North Asia in 2002 and its accompanying anomalous atmospheric circulation were studied through diagnosis on the atmospheric reanalysis data set. Results show that the winter of 2002 is of the warmest in the recent 54 years in North Asia, which was caused by both decadal scale and interannual scale variability. The interannual variability is proved to be as the main cause for the event, and it is related to the global scale atmospheric circulation anomalies, with the strongest of them in the Eastern Hemisphere and in the middle and high latitude region of the Southern Hemisphere.  相似文献   

20.
A dipole mode in the tropical Indian Ocean   总被引:203,自引:0,他引:203  
For the tropical Pacific and Atlantic oceans, internal modes of variability that lead to climatic oscillations have been recognized, but in the Indian Ocean region a similar ocean-atmosphere interaction causing interannual climate variability has not yet been found. Here we report an analysis of observational data over the past 40 years, showing a dipole mode in the Indian Ocean: a pattern of internal variability with anomalously low sea surface temperatures off Sumatra and high sea surface temperatures in the western Indian Ocean, with accompanying wind and precipitation anomalies. The spatio-temporal links between sea surface temperatures and winds reveal a strong coupling through the precipitation field and ocean dynamics. This air-sea interaction process is unique and inherent in the Indian Ocean, and is shown to be independent of the El Ni?o/Southern Oscillation. The discovery of this dipole mode that accounts for about 12% of the sea surface temperature variability in the Indian Ocean--and, in its active years, also causes severe rainfall in eastern Africa and droughts in Indonesia--brightens the prospects for a long-term forecast of rainfall anomalies in the affected countries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号