首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
以炭黑(CB3100)为导电相,硅橡胶为基质制备柔性触觉传感器用导电复合材料.分析了测量压阻特性的电极置于导电橡胶体内或覆盖于导电橡胶表层对压阻实验数据的影响.实验结果表明,压阻特性非线性特性明显,采用二次多项式拟合压阻实验数据可获得高拟合优度,且电极内嵌于导电橡胶测得的压阻数据拟合的相关系数均高于电极外贴在导电橡胶上测得的压阻数据拟合的相关系数.灵敏度与材料的初始电阻正相关,电极外贴于导电橡胶表面的传感器结构可获得较高的力灵敏度.  相似文献   

2.
三维力柔性触觉传感器设计   总被引:1,自引:1,他引:0  
对力敏导电橡胶的压阻特性进行了分析和实验验证,得到了传感器单元三维力信息获取的数学模型,并进行了传感器阵列结构和信号处理电路的设计;通过实验对三维力触觉传感器单元进行了验证,并分析了实验结果.实验结果表明,基于力敏导电橡胶的柔性三维力触觉传感器符合设计要求,为进一步研究三维力柔性传感器提供了一种新思路.  相似文献   

3.
随着物联网、人工智能等技术的兴起,柔性压阻传感器在人工触觉、健康监测、仿生电子皮肤等领域具有广阔的应用前景.目前柔性压阻传感器的灵敏度和稳定性与实际应用还存在一定的差距.本文中以AgNWs和MXene为导电材料,以具有良好生物兼容性的明胶为聚合物基体,采用冷冻干燥法制备一种多孔蜂窝状的AgNWs-MXene/明胶压阻传感器.测试结果表明所制备的柔性压阻传感器在0~14 kPa压强范围内具有3个线性响应区,在4~9 kPa压强范围内灵敏度最高,为116 kPa-1.该传感器的响应时间最快可达1.79 s,且对人体脉搏跳动及肢体的运动状态具有良好的压阻敏感特性,表明实验所制备的柔性压阻传感器在柔性可穿戴电子器件领域具有良好的应用前景.  相似文献   

4.
文章给出了炭黑填充导电橡胶(导电炭黑/橡胶)的"正电阻-温度系数"(positive temperature coefficient of resistance,PTCR)近似计算方程;采用该方程并结合形变和电阻率对PTCR效应的影响程度,分析了温度敏感导电炭黑/橡胶的工作原理。结果表明:基体的体积膨胀导致炭黑体积分数被稀释的过程对PTCR效应存在重要影响,基体的体积膨胀导致材料几何外形的改变对PTCR效应无显著影响;此外,当导电炭黑/橡胶分别用于温度传感和压力传感时,其工作原理不同,用于温度传感时,其工作原理仅为炭黑填料体积分数的被稀释而导致的材料电阻率的变化。  相似文献   

5.
文章基于溶液共混法,制成了一种新型的碳纳米管/炭黑/硅胶多相复合材料.实验利用TEM、压阻测试平台等手段表征和分析了碳纳米管的功能化、添加比例对复合材料性能的影响.实验结果表明:功能化可以有效改善碳纳米管的表面特性,进而改善其在聚合物中的分散性;不同维度纳米材料(碳纳米管/炭黑)的并用会在橡胶体系中形成“葡萄串”结构,...  相似文献   

6.
聚氯乙烯/炭黑复合型泡沫导电高分子材料的电性能   总被引:1,自引:0,他引:1  
以特导炭黑(CB)为导电填料, 聚氯乙烯(PVC)和三元乙丙橡胶(EPDM)为主基体制备PVC泡沫导电复合材料, 研究该复合材料的泡孔结构和阻温特性, 分析炭黑含量、 交联剂和发泡剂对复合材料电性能的影响. 结果表明, 所制备的导电泡沫具有较理想的泡孔结构, 经过升温电阻测试, 该泡沫体出现负温度系数(NTC)效应, 随着炭黑含量的增加, 在NTC效应后期出现正温度系数(PTC)效应. 通过探讨NTC效应 的机理, 确定了发泡剂和交联剂的用量, 从而获得良好的泡沫性能和NTC特性的导电泡沫材料.   相似文献   

7.
为实现法向力与切向力感知,设计了一种可用于机器人仿生皮肤的电容式柔性触觉传感器,并设计成阵列结构.以硅橡胶为柔性基体,有机硅导电银胶为上下两柔性极板,共同构成电容式触觉敏感单元.分析并介绍电容式柔性触觉传感器的工作原理、结构设计及触觉信息采集与处理系统.可实现法向力0~5 N范围内灵敏度为6.78 f F/N,切向力0~3 N范围内灵敏度为11.45 f F/N的触觉感知功能.试验结果表明,该全柔性电容式触觉阵列传感器具有良好的稳定性与灵敏度,可用作人工皮肤实现触觉感知.  相似文献   

8.
本研究了橡胶/炭黑复合材料体系的导电性能。实验指出,其电阻率随温度的变化呈不同强度的正温度系数(PTC)效应,讨论了不同炭黑粒子填充率,橡胶基体的性质,炭黑的结构及表面性质,加工工艺和硫化条件等对室温电阻率及PTC效应的影响。  相似文献   

9.
柔性压阻碳复合膜的制备及其特性   总被引:1,自引:0,他引:1  
为研究柔性力敏传感器,以碳纳米粉为导电相,硅橡胶和有机树脂为绝缘相,在聚酰亚胺基底材料上制备了一种新型的柔性碳复合膜,其金属电极和引线用MEMS工艺制备。实验研究表明:在0~1MPa范围内这种碳复合膜的导电特性随正向应变发生显著变化;在0~0.7MPa范围内表现近似线性的压阻关系,并具有良好的温度稳定性。用这种碳复合膜制备的力敏元件不受被测物体表面形状的限制,可以被广泛应用于各种规则和不规则曲面的挤压应力测量。  相似文献   

10.
为了改善填料的分散性,采用离子液体1-烯丙基-3-甲基氯化咪唑(AMI)改性白炭黑(SiO_2),并制备改性白炭黑/炭黑/天然橡胶复合材料,通过傅里叶红外光谱(FT-IR),扫描电镜(SEM),动态力学分析仪(DMA),热失重分析仪(TGA)等分析方法,研究AMI改性对白炭黑/炭黑/天然橡胶复合材料微观结构、力学性能、动态力学性能的影响。结果表明:经AMI改性后,白炭黑粒子间的相互作用减小,团聚倾向减弱,且与炭黑并用后在橡胶复合材料基体中的分散性改善,弥散效应和界面作用增强,改性复合材料的硫化反应活化能降低,综合力学性能提高。此外,离子液体用量的提高有助于复合材料分子链有序性的增加,使复合材料的热稳定性增强。可见改性白炭黑与炭黑并用对橡胶有很好的补强效果。  相似文献   

11.
多壁碳纳米管/硅橡胶复合材料压敏元件特性   总被引:1,自引:0,他引:1  
为研究碳纳米管填充聚合物复合材料的压力敏感特性,将硅橡胶为基体、多壁碳纳米管为填料的复合材料涂覆在印制板基底上,经溶剂挥发成膜,制备出柔顺式复合材料压敏元件。对碳纳米管质量分数1.6%、4.3%、9.3%的元件进行压阻特性测试,在单轴步进压力下实时检测压力和元件电阻。结果表明,压敏元件在0~110N单轴步进压力下表现出正压阻效应,特性曲线的变化区间与碳纳米管质量分数相互对应。提出压阻效应的机理是元件在压力作用下产生变形,导致碳纳米管导电网络发生破坏与重构。扫描电镜分析表明,碳纳米管随机取向分散于硅橡胶基体中,形成1-3型复合结构。该新型复合材料压敏元件可用于开发柔顺式力传感器。  相似文献   

12.
基于周期性边界条件建立具有随机分布形态的代表性体积单元,通过细观力学有限元方法对炭黑颗粒填充橡胶复合材料的宏观力学行为进行模拟仿真.重点分析圆形和方形炭黑填料粒子模型的变形场和应力场,以及炭黑填料的体积分数对复合材料有效弹性模量的影响规律.结果显示:炭黑颗粒的填充显著提升橡胶材料的弹性模量,而且炭黑填充橡胶材料的有效弹性模量随着炭黑含量的增加而增大;在相同的炭黑含量条件下,方形粒子模型对橡胶材料有效弹性模量的预测结果明显高于圆形粒子模型.  相似文献   

13.
炭黑填充LDPE体系发泡复合材料的导电性能   总被引:1,自引:0,他引:1  
以低密度聚乙烯(LDPE)和乙烯-乙酸乙烯酯(EVA)为主基体, 乙炔炭黑(ACET)为导电填料, 偶氮二甲酰胺(AC)为发泡剂, 过氧化二异丙苯(DCP)为交联剂制备LDPE/EVA/CB导电泡沫复合材料. 通过分析炭黑含量、 交联剂、 发泡剂对复合材料电性能的影响表明, 该导电泡沫具有较理想的泡孔结构, 升温电阻测试表明, LDPE/EVA/ACET导电发泡复合材料具有较好的开关特性, 呈明显的正温度系数(PTC)特性, 并确定了发泡剂和交联剂的用量, 获得了具有较好泡沫性能和PTC特性的导电泡沫材料.   相似文献   

14.
通过研究水泥基体的导电性能和不同纤维掺量、外力作用下及掺入骨料后的碳纤维水泥基复合材料的导电性能,探讨碳纤维水泥基复合材料的导电机理.研究表明,水泥基体的电阻随水化时间显著增加,其导电机理是强电解质溶液的离子导电;碳纤维水泥基复合材料的电阻率随纤维掺量增加而显著降低,其电导由接触导电、隧道导电和离子导电3种机制共同决定;碳纤维水泥基复合材料在压力作用下,电阻率因界面接触的改善和纤维搭接概率的增加而降低,在拉力作用下,电阻率因纤维的拔出、折断而提高;骨料的引入增加了复合材料的电阻,这是由于骨料增加了纤维分散的难度和折断的概率,同时阻碍了纤维的搭接并提高了隧道势垒.  相似文献   

15.
选用三元乙丙橡胶(EPDM)为基胶,氮化铝(A1N)为导热填料,通过酚醛树脂(PF)对氮化铝进行表面改性处理,增加其在橡胶基体中的分散性。利用接触角和TGA测试表征改性效果。将改性前后的氮化铝分别填充到三元乙丙橡胶中,研究酚醛树脂改性氮化铝对复合材料的导热性能及力学性能的影响规律。结果表明:改性后氮化铝表面自由能均减小,氮化铝表面包覆了有机基团,减弱了其在橡胶基体中的团聚作用。热分解曲线可以说明,3种改性配比(1#~3#,m(PF):m(A1N)=1:5,1:4,1:3)氮化铝的酚醛树脂包覆量为1#〈2#〈3#,填充改性后氮化铝的复合材料导热性能均有不同程度的提高,而力学性能均有所降低。综合考虑,酚醛树脂改性氮化铝的最佳质量配比为m(PF):m(A1N)=1:4。  相似文献   

16.
炭黑/硅橡胶复合型导电橡胶的导电特性   总被引:8,自引:0,他引:8  
研究了炭黑 /硅橡胶复合型导电橡胶的导电特性 .对升温过程中导电硅橡胶电阻变化的过程及导电粒子含量对导电硅橡胶电阻温度特性的影响进行了研究 ,测量了在不同热处理温度下电阻率的变化及加力时电阻的弛豫时间 .分析了温度对电阻特性影响的机理 .  相似文献   

17.
本文探讨了在含铜感压导电橡胶的制备过程中,铜粉粒径、铜粉含量橡胶片厚度和它与两电极板的接触方式对感压导电橡胶的感压导电灵敏性的影响,实验结果表明:通过混合粒径为75-125μm的铜粉250-450(重量),硅橡胶100份,硫化剂5份,然后硫化成0.4的薄片,可以制备出具有较高灵敏性的感压导电橡胶。此种弹性材料可用作开关。  相似文献   

18.
研究不同长径比的多壁阵列碳纳米管束(carbon nanotube bundles,CNTBs)非等量替代炭黑N234并用的填料增强体系对天然橡胶(NR)导热性能和动态力学性能的影响。利用非线性拟合分析CNTBs管径与CNTBs/N234并用NR复合材料热导率的关系,发现随着CNTBs管径的减小和用量的提高,复合材料导热性能逐步提高。通过表征CNTBs在橡胶基体中形成的填料网络,发现CNTBs长径比增大和用量提高会导致杂化填料的分散效果下降即出现Payne效应,使复合材料在动态工况下损耗增大,60℃下7%应变的tanδ和疲劳温升出现增加。此外,添加长径比更大的CNTBs能提升材料的抗湿滑性能,提高玻璃化转变温度,但对磨耗性能有不利影响,CNTBs添加量为6 phr(相对于每100份以质量计量的橡胶添加的份数)时材料的磨耗体积显著增大。  相似文献   

19.
The thermal conductive behavior of Zirconium diboride(Zr B_2)coated with different proportions nanoalumina(Al_2O_3)in epoxy composites was investigated by the laser flash experimental and finite element analysis(FEA)methods.The coated Zr B_2composite particles were categorized into the 3-1,3-2,3-3 and 3-4 systems,which corresponded to four different mass ratios of Zr B_2particles to Al_2O_3particles,respectively.It could be found that the coated Zr B_2composite particles were effective for increasing the thermal conductivity of the filled epoxy composites due to more effective formation of the conductive chain structure in the composites compared to the single-phase particles.In comparison,the system of 3-3 showed the most positive effect on improving the thermal conductive performance of epoxy composites.For composites with a 7 vol%of Zr B_2/Al_2O_3composite particles of 3-3 system,its thermal conductivity was 0.65 W m~(-1)K~(-1),increased by 20%and 79%relative to single-filled composites of Zr B_2and Al_2O_3with same filled content,respectively.The predicted thermal conductive results of Al_2O_3coated Zr B_2particles in epoxy matrix obtained by finite element analysis were in reasonable agreement with the experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号