首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
A new subunit of the human T-cell antigen receptor complex   总被引:17,自引:0,他引:17  
A M Weissman  L E Samelson  R D Klausner 《Nature》1986,324(6096):480-482
The T-cell antigen receptor binds antigen in association with a cell surface molecule encoded by the major histocompatibility complex (MHC). MHC restricted recognition of antigen by this receptor leads to the complex pattern of programmed gene expression that characterizes T-cell activation. The eventual understanding of human T-cell function will require the complete elucidation of the structure of the human T-cell antigen receptor. On human T cells, clonally determined, disulphide-linked alpha and beta chains of the receptor are non-covalently and stoichiometrically associated with three additional polypeptides known as the T3 complex. These receptor subunits are glycoproteins of relative molecular mass (Mr) 25,000 (25K) and 20K (gamma and delta) and a non-glycosylated 20K protein (epsilon). Our studies of murine T cells show that the mouse T-cell antigen receptor consists of at least seven distinct polypeptide chains. In addition to clonotypic alpha and beta chains, the murine complex consists of glycoproteins of 26K and 21K and endoglycosaminidase F (endo F)-insensitive polypeptides of 25K, 21K and 16K. The latter, which we have termed zeta (zeta), exists as a homodimer within the complex. The 26K component (gp26) has been shown to be the murine analogue of the human delta chain. Other cross species homologies remain to be established, however none of the described human receptor components appear similar to the murine zeta polypeptide. We report here the use of an antiserum raised against the murine zeta subunit to identify a previously unrecognized component of the human T-cell antigen receptor. This human protein is T-cell specific and biochemically similar to the murine zeta polypeptide.  相似文献   

2.
H C Oettgen  C L Pettey  W L Maloy  C Terhorst 《Nature》1986,320(6059):272-275
Antigen recognition by human T lymphocytes and initiation of T-cell activation are mediated by a group of integral membrane proteins, the T-cell antigen receptor (TCR) and the T3 complex. The polypeptides which comprise T3 (a gamma-chain of relative molecular mass (Mr) 25,000 (25K), and delta and epsilon chains of 20K each) are physically associated with the TCR chains. Surface expression of the complex requires the presence of all the component T3 and TCR proteins. In contrast to the human system, murine T3 has not been identified using antibodies. Here we describe a murine T3-like protein complex. It appears to be more complicated than human T3, containing three monomeric glycoproteins (21-28K), two of which have N-linked carbohydrate side chains and a novel family of TCR-associated homo- and heterodimers. The 28K protein is identified as the murine T3 delta-chain. The 21K protein is phosphorylated on cell activation with concanavalin A (Con A).  相似文献   

3.
T Saito  A Weiss  J Miller  M A Norcross  R N Germain 《Nature》1987,325(7000):125-130
The genes encoding the alpha and beta chains of the T-cell receptor (Ti) of an antigen-specific, Ia-restricted murine T-cell hybridoma were introduced into T3-positive or T3-negative human T cells. The resultant transfectants express either mouse-human or mouse-mouse Ti alpha beta molecules functionally associated with the human T3 complex. Only the complete murine Ti alpha beta dimer mediates specific functional corecognition of the appropriate antigen-Ia pair.  相似文献   

4.
G K Sim  J Yagüe  J Nelson  P Marrack  E Palmer  A Augustin  J Kappler 《Nature》1984,312(5996):771-775
The T-cell receptor has been studied intensely over the past 10 years in an effort to understand the molecular basis for major histocompatibility complex (MHC) restricted antigen recognition. The use of anti-receptor monoclonal antibodies to isolate and characterize the receptor from human and murine T-cell clones has shown that the protein consists of two disulphide-linked glycopeptides, alpha and beta, distinct from known immunoglobulin light and heavy chains. Like immunoglobulin light and heavy chains, however, both the alpha- and beta-chains are composed of variable and constant regions. Molecular cloning has revealed that the beta-chain is evolutionarily related to immunoglobulins, and is encoded in separate V (variable), D (diversity), J (joining) and C (constant) segments that are rearranged in T cells to produce a functional gene. We report here cDNA clones encoding the alpha-chain of the receptor of the human T-cell leukaemia line HPB-MLT. Using these cDNA probes, we find that expression of alpha-chain mRNA and rearrangement of an alpha-chain V-gene segment occur only in T cells. The protein sequence predicted by these cDNAs is homologous to T-cell receptor beta-chains and to immunoglobulin heavy and light chains, particularly in the V and J segments.  相似文献   

5.
I Bank  R A DePinho  M B Brenner  J Cassimeris  F W Alt  L Chess 《Nature》1986,322(6075):179-181
The known T-cell receptors (TCRs) involved in the recognition of antigen and major histocompatibility complex (MHC) molecules are glycoproteins comprised of polymorphic disulphide-linked alpha- and beta-chains. The genes encoding these chains are homologous to immunoglobulin genes and consist of V (variable), J (joining) and C (constant) regions that rearrange during development. TCRs are expressed relatively late in thymocyte development and only in association with an invariant molecular complex of proteins termed T3. Immature thymocytes do not express the TCR-T3 complex but do express messenger RNA encoding a third rearranging T-cell receptor-like gene, termed T gamma. Here we report a clone of normal immature T4-T8- human thymocytes, designated CII, which does not express mature mRNA for T alpha or T beta genes, but does express high levels of T gamma mRNA. This clone also expresses high levels of surface T3, and antibodies to T3 induce immunologically relevant functions in CII cells. Immunoprecipitation of CII surface-labelled proteins with anti-T3 co-precipitates a T3 molecular complex together with two additional and novel peptides of relative molecular mass (Mr), 44,000 (44K) and 62,000 (62K).  相似文献   

6.
The study of human autoimmune diseases has benefited greatly from analysis of animal models. Mice that are homozygous for either the lpr (lymphoproliferation) or gld (generalized lymphoproliferative disease) mutant genes develop a disease characterized by massive lymphadenopathy and autoantibody formation. With age, the lymphoid organs in these mice are replaced with a greatly expanded population of abnormal lymphocytes. Recent work has shown that these cells are likely to be in the T-cell lineage. They rearrange and transcribe the genes for the alpha and beta subunits of the T-cell receptor (TCR) and a third, T-cell receptor-like gene, T gamma. As determined by immunofluorescence with anti-receptor antibodies the cells also express TCR on the cell surface. The murine T-cell receptor consists of the alpha and beta chains, derived from the rearranged alpha and beta genes, in non-covalent association with seven other chains; the delta chain, of relative molecular mass (Mr) 26,000 (26K), the epsilon chain (25K), a glycosylated 21K chain (gp21) which is probably the homologue of the gamma chain of T3 (CD3), a 16K homodimer (zeta) and a 21K dimer (p21). This multichain complex is thought to be the murine analogue of the human T3 complex. After activation of normal T cells by antigen or lectin, p21 is phosphorylated on tyrosine residues and gp21 is phosphorylated on serine residues. In contrast, in the gld and lpr cells, p21 is phosphorylated even in the absence of antigen or lectin, whereas gp21 is not phosphorylated.  相似文献   

7.
J Kaye  S M Hedrick 《Nature》1988,336(6199):580-583
The majority of peripheral T lymphocytes bear cell-surface antigen receptors comprised of a disulphide-linked alpha beta dimer. In an immune response, this receptor endows T cells with specificities for foreign antigenic protein fragments bound to cell surface glycoproteins encoded in the major histocompatibility complex (MHC). At a high frequency (greater than 1%), the same population of T lymphocytes responds to allogeneic MHC glycoproteins, or to differences at other genetic loci termed Mls, in conjunction with MHC. The alpha beta-antigen receptor has been implicated in alloreactivity and Mls reactivity. In fact, many monoclonal T-cell lines recognize a foreign protein fragment bound to self-MHC molecules and, in addition, recognize allogeneic MHC glycoproteins, an Mls-encoded determinant, or both. For at least one T-cell clone, a monoclonal antibody directed against the alpha beta antigen receptor has been shown to block activation induced by either antigen-bound self-MHC or by allogeneic MHC. However, it remains to be demonstrated directly that a single alpha beta receptor can mediate antigen specificity, alloreactivity and Mls reactivity, a prerequisite to understanding the structural basis of these high-frequency cross-reactivities. To address this issue we have performed transfers of receptor chain genes from a multiple-reactive T-cell clone into an unrelated host T lymphocyte. We now demonstrate definitively that the genes encoding a single alpha beta-receptor chain pair can transfer the recognition of self-MHC molecules complexed with fragments of antigen, allogeneic MHC molecules, and an Mls-encoded determinant (presumably in conjunction with MHC). In this case the transfer of antigen specificity and alloreactivity requires a specific alpha beta-receptor chain combination, whereas Mls reactivity can be transferred with the beta-chain gene alone into a recipient expressing a randomly selected alpha-chain.  相似文献   

8.
T Saito  R N Germain 《Nature》1987,329(6136):256-259
Activation of mature T lymphocytes requires specific corecognition of antigen together with membrane-associated glycoprotein products of the major histocompatibility complex (MHC). This dual specificity is determined by a single receptor structure consisting of a clone-specific alpha beta heterodimer. Because both the alpha and beta subunits possess unique combining-site-containing V regions, it remains an open issue as to what contribution each of the two chains of the receptor makes to the antigen versus MHC recognition specificities of the complete dimer present on any given T cell or in the T-cell pool as a whole. In the present work, we have used DNA-mediated gene transfer to express a new alpha or beta chain in a recipient murine T-cell hybridoma possessing a related antigen but distinct MHC specificity compared to the receptor-gene donor. Our results demonstrate that a beta-gene transfected hybridoma expresses new receptors with a predictable hybrid specificity, establishing that the beta chain has the predominant role in MHC molecule recognition in this model.  相似文献   

9.
Presence of Ti (WT31) negative T lymphocytes in normal blood and thymus   总被引:43,自引:0,他引:43  
L L Lanier  A Weiss 《Nature》1986,324(6094):268-270
The antigen receptor expressed on most T lymphocytes is a disulphide-linked heterodimer (Ti) that is composed of alpha-chain and beta-chain subunits. On the surface of human T lymphocytes, Ti is non-covalently associated with three invariant proteins, designated CD3-gamma, -delta, and -epsilon. It has been suggested that Ti is obligatory for CD3 expression. But a T leukaemia cell line, IL-2 (interleukin 2) dependent T-cell clones established from fetal blood and IL-2 dependent cell lines established from immunodeficiency patients with bare lymphocyte syndrome and ectodermal dysplasia syndrome have recently been shown to express CD3, but not Ti (detected due to monoclonal antibody WT31). These lymphocytes may express the product of the T-cell antigen receptor gamma (TCR-gamma) gene, rather than the alpha/beta heterodimer, in association with CD3. Preliminary studies suggested that T cells expressing CD3 but lacking Ti are present in low frequency in normal lymphoid tissues. Here we show that in normal blood and thymus CD3+, WT31-T cells express neither CD4 nor CD8. The low frequency (less than 0.2-0.9% of total thymocytes) of CD3+, WT31- cells in the thymus suggests that this population does not represent a major stage of thymic development and may be a distinct lineage of T cells.  相似文献   

10.
R L Modlin  M B Brenner  M S Krangel  A D Duby  B R Bloom 《Nature》1987,329(6139):541-545
Cells which can suppress the immune response to an antigen (TS cells) appear to be essential for regulation of the immune system. But the characterization of the TS lineage has not been extensive and many are sceptical of studies using uncloned or hybrid T-cell lines. The nature of the antigen receptor on these cells is unclear. T cells of the helper or cytotoxic lineages appear to recognize their targets using the T-cell receptor (TCR) alpha beta-CD3 complex. TCR beta-gene rearrangements are also found in some murine and human suppressor cell lines but others have been shown not to rearrange or express the beta-chain or alpha-chain genes. We previously established TS clones derived from lepromatous leprosy patients which carry the CD8 antigen and recognize antigen in the context of the major histocompatibility complex (MHC) class II molecules in vitro. We here report the characterization of additional MHC-restricted TS clones which rearrange TCR beta genes, express messenger RNA for the alpha and beta chains of the TCR and express clonally unique CD3-associated TCR alpha beta structures on their cell surface but do not express the gamma chain of the gamma delta TCR on the cell surface. We conclude that antigen recognition by at least some human CD8+ suppressor cells is likely to be mediated by TCR alpha beta heterodimers.  相似文献   

11.
The antigen receptor on T lymphocytes has recently been characterized as a heterodimeric, transmembrane glycoprotein consisting of disulphide-linked alpha (acidic) and beta (basic) subunits of relative molecular mass (Mr) 40,000-45,000 each. The genes encoding these proteins have been cloned and shown to resemble immunoglobulin genes in both overall structure and the requirement for DNA rearrangement before expression. In humans, three additional proteins, termed the T3 complex, are found associated with the clonotypic receptor, and a role for T3 in receptor expression has been proposed. Despite these recent advances in characterizing the antigen receptor complex, there is as yet little understanding of T-cell maturation, particularly the stage of T-cell ontogeny at which the genes encoding the antigen receptor and its associated structures are expressed and assembled. In the adult, stem cells destined to differentiate into T cells arise in the bone marrow and migrate to the thymus, where T-cell precursors proliferate, develop a preference for recognizing antigens in the context of self MHC molecules and are released to the periphery. Recently, cells that have the properties of immature murine thymocytes have been isolated and described. We have now analysed these cells with a series of molecular probes and we describe three distinct patterns of T-cell antigen receptor gene rearrangements in developing thymocytes.  相似文献   

12.
P van den Elsen  B A Shepley  M Cho  C Terhorst 《Nature》1985,314(6011):542-544
The antigen receptor on the surface of human T lymphocytes, which consists of a heterodimer of relative molecular mass (Mr) 90,000 (90K) (alpha- and beta-chains), is associated with the T3 antigen (gamma = 25K, delta = 20K and epsilon = 20K). A working model for the mode of action of the T3/T-cell receptor complex is that the clonotypic alpha- and beta-chains are involved in the recognition and binding of antigen in the context of polymorphic major histocompatibility complex (MHC) gene products on the surface of target cells. Antigen binding by the clonotypic receptor probably results in conformational changes in this structure which are recognized by and subsequently trigger the associated T3 complex to transmit signals into the cell, resulting in a proliferative response. The similarity in structure between murine and human clonotypic antigen receptors suggests that such a mechanism of recognition and activation also exists in mouse T lymphocytes, but so far there has been no evidence for the existence of a murine T3 complex. Here we demonstrate the existence of a T3 delta-chain mRNA in murine T lymphocytes. Our sequence data strongly suggest that this mouse mRNA codes for a complete T3 delta polypeptide chain and reveal some interesting properties of the protein.  相似文献   

13.
Developmental regulation of T-cell receptor gene expression   总被引:13,自引:0,他引:13  
D H Raulet  R D Garman  H Saito  S Tonegawa 《Nature》1985,314(6006):103-107
In contrast to B cells or their antibody products, T lymphocytes have a dual specificity, for both the eliciting foreign antigen and for polymorphic determinants on cell surface glycoproteins encoded in the major histocompatibility complex (MHC restriction). The recent identification of T-cell receptor glycoproteins as well as the genes encoding T-cell receptor subunits will help to elucidate whether MHC proteins and foreign antigens are recognized by two T-cell receptors or by a single receptor. An important feature of MHC restriction is that it appears to be largely acquired by a differentiating T-cell population under the influence of MHC antigens expressed in the thymus, suggesting that precursor T cells are selected on the basis of their reactivity with MHC determinants expressed in the host thymus. To understand this process of 'thymus education', knowledge of the developmental regulation of T-cell receptor gene expression is necessary. Here we report that whereas messenger RNAs encoding the beta-and gamma-subunits are relatively abundant in immature thymocytes, alpha mRNA levels are very low. Interestingly, whereas alpha mRNA levels increase during further development and beta mRNA levels stay roughly constant, gamma mRNA falls to very low levels in mature T cells, suggesting a role for the gamma gene in T-cell differentiation.  相似文献   

14.
Identification and sequence of a fourth human T cell antigen receptor chain   总被引:2,自引:0,他引:2  
  相似文献   

15.
T lymphocytes are predisposed to recognition of foreign protein fragments bound to cell-surface molecules encoded by the major histocompatibility complex (MHC). There is now compelling evidence that this specificity is a consequence of a selection process operating on developing T lymphocytes in the thymus. As a result of this positive selection, thymocytes that express antigen receptors with a threshold affinity for self MHC-encoded glycoproteins preferentially emigrate from the thymus and seed peripheral lymphoid organs. The specificity for both foreign antigen and MHC molecules is imparted by the alpha and beta chains of the T-cell antigen receptor (TCR). Two other T-cell surface proteins, CD4 and CD8, which bind non-polymorphic regions of class II and class I MHC molecules respectively, are also involved in these recognition events and play an integral role in thymic selection. In order to elucidate the developmental pathways of class II MHC-restricted T cells in relation to these essential accessory molecules, we have produced TCR-transgenic mice expressing a receptor specific for a fragment of pigeon cytochrome c and the Ek (class II MHC) molecule. The transgenic TCR is expressed on virtually all T cells in mice expressing Ek. The thymuses of these mice contain an abnormally high percentage of mature CD4+CD8- cells. In addition, the peripheral T-cell population is almost exclusively CD4+, demonstrating that the MHC specificity of the TCR determines the phenotype of T cells during selection in the thymus.  相似文献   

16.
T Goodman  L Lefran?ois 《Nature》1988,333(6176):855-858
The vast majority of mature T lymphocytes in the peripheral blood and lymphoid organs use the CD3-associated alpha, beta T-cell receptor (TCR) heterodimer for antigen recognition. A second class of TCRs consists of disulphide-linked gamma and delta proteins that are also CD3-associated. A subset of early CD3+ fetal and adult CD4- 8- thymocytes express gamma, delta TCRs before alpha, beta TCRs are detectable. In addition, a minor (1-5%) subpopulation of peripheral T lymphocytes, and some spleen cells from nude mice express gamma, delta TCRs. Notably, dendritic epidermal cells have also been shown to express gamma, delta TCRs. All of these populations lack CD4 and CD8 molecules. We now report that most mature T cells residing in the murine intestinal epithelium express CD3-associated TCRs composed of gamma-chains disulphide-linked to a protein resembling the delta-chain. The striking feature of these intraepithelial lymphocytes (IEL) was that they were exclusively CD4-8+. In addition, approximately half of CD3-bearing IEL lacked detectable Thy-1 on the cell surface, which is unprecedented for murine T cells. In contrast to other CD8+ peripheral T cells, freshly isolated IEL could be induced to display cytolytic activity by engaging the CD3 molecule, indicating that activation had occurred in vivo. Thus, CD8+ IEL are a phenotypically diverse and anatomically restricted population of lymphocytes that use gamma-chain containing heterodimers for antigen recognition.  相似文献   

17.
R K?nig  L Y Huang  R N Germain 《Nature》1992,356(6372):796-798
Interactions between major histocompatibility complex (MHC) molecules and the CD4 or CD8 coreceptors have a major role in intrathymic T-cell selection. On mature T cells, each of these two glycoproteins is associated with a class-specific bias in MHC molecule recognition by the T-cell receptor. CD4+ T cells respond to antigen in association with MHC class II molecules and CD8+ T cells respond to antigen in association with MHC class I molecules. Physical interaction between the CD4/MHC class II molecules and CD8/MHC class I molecules has been demonstrated by cell adhesion assay, and a binding site for CD8 on class I has been identified. Here we demonstrate that a region of the MHC class II beta-chain beta 2 domain, structurally analogous to the CD8-binding loop in the MHC class I alpha 3 domain, is critical for function with both mouse and human CD4.  相似文献   

18.
Most T cells bear an antigen receptor that is a protein of a disulphide-linked heterodimer composed of an alpha chain and a beta chain associated with the non-polymorphic CD3 (T3) complex. A small subpopulation of thymic and peripheral T cells, as well as Thy-1+dendritic epidermal cells (dEC), express an alternative CD3-associated dimeric receptor composed of the product of the T-cell antigen receptor (TCR) gamma gene and a fourth chain, designated delta. Recently a new murine TCR constant-region gene, designated Cx, has been cloned and proposed as a candidate for the C delta gene. We have previously demonstrated that murine Thy-1+ dEC cell lines express a CD3-associated disulphide-linked heterodimer composed of a relative molecular mass Mr 41,000 (41K) gamma chain and a 50K delta chain. We have further analysed the receptor of one of these cloned dEC lines, 7-17.1, by endoglycosidase treatment of the isolated gamma and delta chains. The gamma chain was found to contain two N-linked oligosaccharide residues, consistent with the expression of a chain encoded by the V gamma 3 and C gamma 1 gene segments. The delta chain contains at least three N-linked oligosaccharides and has a core size of 38K. Northern blot analysis indicated the presence of abundant Cx messenger RNA in 7-17.1 cells. Immunoprecipitation with two antisera to peptides comprising distinct regions of the Cx sequence indicates that the delta chain is encoded by the Cx gene.  相似文献   

19.
T-cell differentiation in the thymus is thought to involve a progression from the CD4-CD8- phenotype through CD4+CD8+ intermediates to mature CD4+ or CD8+ cells. There is evidence that during this process T cells bearing receptors potentially reactive to 'self' are deleted by a process termed 'negative selection' One example of this process occurs in mice carrying polymorphic Mls antigens, against which a detectable proportion of T cells are autoreactive. These mice show clonal deletion of thymic and peripheral T-cell subsets that express the autoreactive V beta 3 segment of the T-cell antigen receptor, but at most a two-fold depletion of thymic cells at the CD4+CD8+ stage. By contrast, transgenic mice bearing both alpha and beta chain genes encoding autoreactive receptors recognizing other ligands, show severe depletion of CD4+CD8+ thymocytes as well, suggesting that negative selection occurs much earlier. We report here the Mls 2a/3a mediated elimination of T cells expressing a transgene encoded V beta 3-segment, in T-cell receptor alpha/beta and beta-transgenic mice. Severe depletion of CD4+CD8+ thymocytes is seen only in the alpha/beta chain transgenic mice, whereas both strains delete mature V beta 3 bearing CD4+ and CD8+ T cells efficiently. We conclude that severe CD4+CD8+ thymocyte deletion in alpha/beta transgenic mice results from the premature expression of both receptor chains, and does not reflect a difference in the timing or mechanism of negative selection for Mls antigens as against the allo- and MHC class 1-restricted antigens used in the other studies.  相似文献   

20.
A Winoto  S Mjolsness  L Hood 《Nature》1985,316(6031):832-836
The vertebrate immune system uses two kinds of antigen-specific receptors, the immunoglobulin molecules of B cells and the antigen receptors of T cells. T-cell receptors are formed by a combination of two different polypeptide chains, alpha and beta (refs 1-3). Three related gene families are expressed in T cells, those encoding the T-cell receptor, alpha and beta, and a third, gamma (refs 4-6), whose function is unknown. Each of these polypeptide chains can be divided into variable (V) and constant (C) regions. The V beta regions are encoded by V beta, diversity (D beta) and joining (J beta) gene segments that rearrange in the differentiating T cell to generate V beta genes. The V gamma regions are encoded by V gamma, J gamma and, possibly, D gamma gene segments. Studies of alpha complementary DNA clones suggest that alpha-polypeptides have V alpha and C alpha regions and are encoded by V alpha and J alpha gene segments and a C alpha gene. Elsewhere in this issue we demonstrate that 18 of 19 J alpha sequences examined are distinct, indicating that the J alpha gene segment repertoire is much larger than those of the immunoglobulin (4-5) or beta (14) gene families. Here we report the germline structures of one V alpha and six J alpha mouse gene segments and demonstrate that the structures of the V alpha and J alpha gene segments and the alpha-recognition sequences for DNA rearrangement are similar to those of their immunoglobulin and beta-chain counterparts. We also show that the J alpha gene-segment organization is strikingly different from that of the other immunoglobulin and rearranging T-cell gene families. Eighteen J alpha gene segments map over 60 kilobases (kb) of DNA 5' to the C alpha gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号