首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dating the rise of atmospheric oxygen   总被引:8,自引:0,他引:8  
Several lines of geological and geochemical evidence indicate that the level of atmospheric oxygen was extremely low before 2.45 billion years (Gyr) ago, and that it had reached considerable levels by 2.22 Gyr ago. Here we present evidence that the rise of atmospheric oxygen had occurred by 2.32 Gyr ago. We found that syngenetic pyrite is present in organic-rich shales of the 2.32-Gyr-old Rooihoogte and Timeball Hill formations, South Africa. The range of the isotopic composition of sulphur in this pyrite is large and shows no evidence of mass-independent fractionation, indicating that atmospheric oxygen was present at significant levels (that is, greater than 10(-5) times that of the present atmospheric level) during the deposition of these units. The presence of rounded pebbles of sideritic iron formation at the base of the Rooihoogte Formation and an extensive and thick ironstone layer consisting of haematitic pisolites and o?lites in the upper Timeball Hill Formation indicate that atmospheric oxygen rose significantly, perhaps for the first time, during the deposition of the Rooihoogte and Timeball Hill formations. These units were deposited between what are probably the second and third of the three Palaeoproterozoic glacial events.  相似文献   

2.
Brocks JJ  Love GD  Summons RE  Knoll AH  Logan GA  Bowden SA 《Nature》2005,437(7060):866-870
The disappearance of iron formations from the geological record approximately 1.8 billion years (Gyr) ago was the consequence of rising oxygen levels in the atmosphere starting 2.45-2.32 Gyr ago. It marks the end of a 2.5-Gyr period dominated by anoxic and iron-rich deep oceans. However, despite rising oxygen levels and a concomitant increase in marine sulphate concentration, related to enhanced sulphide oxidation during continental weathering, the chemistry of the oceans in the following mid-Proterozoic interval (approximately 1.8-0.8 Gyr ago) probably did not yet resemble our oxygen-rich modern oceans. Recent data indicate that marine oxygen and sulphate concentrations may have remained well below current levels during this period, with one model indicating that anoxic and sulphidic marine basins were widespread, and perhaps even globally distributed. Here we present hydrocarbon biomarkers (molecular fossils) from a 1.64-Gyr-old basin in northern Australia, revealing the ecological structure of mid-Proterozoic marine communities. The biomarkers signify a marine basin with anoxic, sulphidic, sulphate-poor and permanently stratified deep waters, hostile to eukaryotic algae. Phototrophic purple sulphur bacteria (Chromatiaceae) were detected in the geological record based on the new carotenoid biomarker okenane, and they seem to have co-existed with communities of green sulphur bacteria (Chlorobiaceae). Collectively, the biomarkers support mounting evidence for a long-lasting Proterozoic world in which oxygen levels remained well below modern levels.  相似文献   

3.
2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis.   总被引:27,自引:0,他引:27  
R E Summons  L L Jahnke  J M Hope  G A Logan 《Nature》1999,400(6744):554-557
Oxygenic photosynthesis is widely accepted as the most important bioenergetic process happening in Earth's surface environment. It is thought to have evolved within the cyanobacterial lineage, but it has been difficult to determine when it began. Evidence based on the occurrence and appearance of stromatolites and microfossils indicates that phototrophy occurred as long ago as 3,465 Myr although no definite physiological inferences can be made from these objects. Carbon isotopes and other geological phenomena provide clues but are also equivocal. Biomarkers are potentially useful because the three domains of extant life-Bacteria, Archaea and Eukarya-have signature membrane lipids with recalcitrant carbon skeletons. These lipids turn into hydrocarbons in sediments and can be found wherever the record is sufficiently well preserved. Here we show that 2-methyl-bacteriohopanepolyols occur in a high proportion of cultured cyanobacteria and cyanobacterial mats. Their 2-methylhopane hydrocarbon derivatives are abundant in organic-rich sediments as old as 2,500 Myr. These biomarkers may help constrain the age of the oldest cyanobacteria and the advent of oxygenic photosynthesis. They could also be used to quantify the ecological importance of cyanobacteria through geological time.  相似文献   

4.
Structures resembling remarkably preserved bacterial and cyanobacterial microfossils from about 3,465-million-year-old Apex cherts of the Warrawoona Group in Western Australia currently provide the oldest morphological evidence for life on Earth and have been taken to support an early beginning for oxygen-producing photosynthesis. Eleven species of filamentous prokaryote, distinguished by shape and geometry, have been put forward as meeting the criteria required of authentic Archaean microfossils, and contrast with other microfossils dismissed as either unreliable or unreproducible. These structures are nearly a billion years older than putative cyanobacterial biomarkers, genomic arguments for cyanobacteria, an oxygenic atmosphere and any comparably diverse suite of microfossils. Here we report new research on the type and re-collected material, involving mapping, optical and electron microscopy, digital image analysis, micro-Raman spectroscopy and other geochemical techniques. We reinterpret the purported microfossil-like structure as secondary artefacts formed from amorphous graphite within multiple generations of metalliferous hydrothermal vein chert and volcanic glass. Although there is no support for primary biological morphology, a Fischer--Tropsch-type synthesis of carbon compounds and carbon isotopic fractionation is inferred for one of the oldest known hydrothermal systems on Earth.  相似文献   

5.
Ueno Y  Yamada K  Yoshida N  Maruyama S  Isozaki Y 《Nature》2006,440(7083):516-519
Methanogenic microbes may be one of the most primitive organisms, although it is uncertain when methanogens first appeared on Earth. During the Archaean era (before 2.5 Gyr ago), methanogens may have been important in regulating climate, because they could have provided sufficient amounts of the greenhouse gas methane to mitigate a severely frozen condition that could have resulted from lower solar luminosity during these times. Nevertheless, no direct geological evidence has hitherto been available in support of the existence of methanogens in the Archaean period, although circumstantial evidence is available in the form of approximately 2.8-Gyr-old carbon-isotope-depleted kerogen. Here we report crushing extraction and carbon isotope analysis of methane-bearing fluid inclusions in approximately 3.5-Gyr-old hydrothermal precipitates from Pilbara craton, Australia. Our results indicate that the extracted fluids contain microbial methane with carbon isotopic compositions of less than -56 per thousand included within original precipitates. This provides the oldest evidence of methanogen (> 3.46 Gyr ago), pre-dating previous geochemical evidence by about 700 million years.  相似文献   

6.
The evolution of the Earth's atmosphere is marked by a transition from an early atmosphere with very low oxygen content to one with an oxygen content within a few per cent of the present atmospheric level. Placing time constraints on this transition is of interest because it identifies the time when oxidative weathering became efficient, when ocean chemistry was transformed by delivery of oxygen and sulphate, and when a large part of Earth's ecology changed from anaerobic to aerobic. The observation of non-mass-dependent sulphur isotope ratios in sedimentary rocks more than approximately 2.45 billion years (2.45 Gyr) old and the disappearance of this signal in younger sediments is taken as one of the strongest lines of evidence for the transition from an anoxic to an oxic atmosphere around 2.45 Gyr ago. Detailed examination of the sulphur isotope record before 2.45 Gyr ago also reveals early and late periods of large amplitude non-mass-dependent signals bracketing an intervening period when the signal was attenuated. Until recently, this record has been too sparse to allow interpretation, but collection of new data has prompted some workers to argue that the Mesoarchaean interval (3.2-2.8 Gyr ago) lacks a non-mass-dependent signal, and records the effects of earlier and possibly permanent oxygenation of the Earth's atmosphere. Here we focus on the Mesoarchaean interval, and demonstrate preservation of a non-mass-dependent signal that differs from that of preceding and following periods in the Archaean. Our findings point to the persistence of an anoxic early atmosphere, and identify variability within the isotope record that suggests changes in pre-2.45-Gyr-ago atmospheric pathways for non-mass-dependent chemistry and in the ultraviolet transparency of an evolving early atmosphere.  相似文献   

7.
8.
Sulphur isotope evidence for an oxic Archaean atmosphere   总被引:1,自引:0,他引:1  
Ohmoto H  Watanabe Y  Ikemi H  Poulson SR  Taylor BE 《Nature》2006,442(7105):908-911
The presence of mass-independently fractionated sulphur isotopes (MIF-S) in many sedimentary rocks older than approximately 2.4 billion years (Gyr), and the absence of MIF-S in younger rocks, has been considered the best evidence for a dramatic change from an anoxic to oxic atmosphere around 2.4 Gyr ago. This is because the only mechanism known to produce MIF-S has been ultraviolet photolysis of volcanic sulphur dioxide gas in an oxygen-poor atmosphere. Here we report the absence of MIF-S throughout approximately 100-m sections of 2.76-Gyr-old lake sediments and 2.92-Gyr-old marine shales in the Pilbara Craton, Western Australia. We propose three possible interpretations of the MIF-S geologic record: (1) the level of atmospheric oxygen fluctuated greatly during the Archaean era; (2) the atmosphere has remained oxic since approximately 3.8 Gyr ago, and MIF-S in sedimentary rocks represents times and regions of violent volcanic eruptions that ejected large volumes of sulphur dioxide into the stratosphere; or (3) MIF-S in rocks was mostly created by non-photochemical reactions during sediment diagenesis, and thus is not linked to atmospheric chemistry.  相似文献   

9.
The role of sulfur in the pyrolysis of kerogen   总被引:1,自引:0,他引:1  
Sulfur plays an important role in the generation and evolution of hydrocarbon from organic matter. Here, a pyrolysis experiment in closed system was performed on Maoming oil shales kerogen (Type Ⅰ), Maoming oil shales kerogen added with sulfur ether and Maoming oil shales kerogen added with sulphur. The results suggest that the existence of sulfur can result in: (i) higher yield of hydrocarbons generated from the kerogen; (ii) decrease of the temperature for the maximum generation of heavy hydrocarbons (the C15+ fraction) by 20℃; (iii) decrease of the temperature for the maximum generation of the aromatics fraction by 40℃, and (iv) acceleration of the aromatization process. The pyrolysates from kerogen added with sulfur are similar to the heating products of the sulfur-rich kerogen as reported in the literatures. It seems that the sulfur catalysis is also an important factor that can make the sulfur-rich kerogen generate low-mature oil at the earlier diagenesis stage, except for the weakness of the C-S and S-S bonds.  相似文献   

10.
Watanabe Y  Martini JE  Ohmoto H 《Nature》2000,408(6812):574-578
Microorganisms have flourished in the oceans since at least 3.8 billion years (3.8 Gyr) ago, but it is not at present clear when they first colonized the land. Organic matter in some Au/U-rich conglomerates and ancient soils of 2.3-2.7 Gyr age has been suggested as remnants of terrestrial organisms. Some 2.7-Gyr-old stromatolites have also been suggested as structures created by terrestrial organisms. However, it has been disputed whether this organic matter is indigenous or exogenic, and whether these stromatolites formed in marine or fresh water. Consequently, the oldest undisputed remnants of terrestrial organisms are currently the 1.2-Gyr-old microfossils from Arizona, USA. Unusually carbonaceous ancient soils--palaeosols--have been found in the Mpumalanga Province (Eastern Transvaal) of South Africa. Here we report the occurrences, elemental ratios (C, H, N, P) and isotopic compositions of this organic matter and its host rocks. These data show that the organic matter very probably represents remnants of microbial mats that developed on the soil surface between 2.6 and 2.7 Gyr ago. This places the development of terrestrial biomass more than 1.4 billion years earlier than previously reported.  相似文献   

11.
Kump LR  Barley ME 《Nature》2007,448(7157):1033-1036
The hypothesis that the establishment of a permanently oxygenated atmosphere at the Archaean-Proterozoic transition (approximately 2.5 billion years ago) occurred when oxygen-producing cyanobacteria evolved is contradicted by biomarker evidence for their presence in rocks 200 million years older. To sustain vanishingly low oxygen levels despite near-modern rates of oxygen production from approximately 2.7-2.5 billion years ago thus requires that oxygen sinks must have been much larger than they are now. Here we propose that the rise of atmospheric oxygen occurred because the predominant sink for oxygen in the Archaean era-enhanced submarine volcanism-was abruptly and permanently diminished during the Archaean-Proterozoic transition. Observations are consistent with the corollary that subaerial volcanism only became widespread after a major tectonic episode of continental stabilization at the beginning of the Proterozoic. Submarine volcanoes are more reducing than subaerial volcanoes, so a shift from predominantly submarine to a mix of subaerial and submarine volcanism more similar to that observed today would have reduced the overall sink for oxygen and led to the rise of atmospheric oxygen.  相似文献   

12.
Bjerrum CJ  Canfield DE 《Nature》2002,417(6885):159-162
After the evolution of oxygen-producing cyanobacteria at some time before 2.7 billion years ago, oxygen production on Earth is thought to have depended on the availability of nutrients in the oceans, such as phosphorus (in the form of orthophosphate). In the modern oceans, a significant removal pathway for phosphorus occurs by way of its adsorption onto iron oxide deposits. Such deposits were thought to be more abundant in the past when, under low sulphate conditions, the formation of large amounts of iron oxides resulted in the deposition of banded iron formations. Under these circumstances, phosphorus removal by iron oxide adsorption could have been enhanced. Here we analyse the phosphorus and iron content of banded iron formations to show that ocean orthophosphate concentrations from 3.2 to 1.9 billion years ago (during the Archaean and early Proterozoic eras) were probably only approximately 10-25% of present-day concentrations. We suggest therefore that low phosphorus availability should have significantly reduced rates of photosynthesis and carbon burial, thereby reducing the long-term oxygen production on the early Earth--as previously speculated--and contributing to the low concentrations of atmospheric oxygen during the late Archaean and early Proterozoic.  相似文献   

13.
Bacterial photosynthesis in surface waters of the open ocean   总被引:25,自引:0,他引:25  
The oxidation of the global ocean by cyanobacterial oxygenic photosynthesis, about 2,100 Myr ago, is presumed to have limited anoxygenic bacterial photosynthesis to oceanic regions that are both anoxic and illuminated. The discovery of oxygen-requiring photosynthetic bacteria about 20 years ago changed this notion, indicating that anoxygenic bacterial photosynthesis could persist under oxidizing conditions. However, the distribution of aerobic photosynthetic bacteria in the world oceans, their photosynthetic competence and their relationship to oxygenic photoautotrophs on global scales are unknown. Here we report the first biophysical evidence demonstrating that aerobic bacterial photosynthesis is widespread in tropical surface waters of the eastern Pacific Ocean and in temperate coastal waters of the northwestern Atlantic. Our results indicate that these organisms account for 2-5% of the photosynthetic electron transport in the upper ocean.  相似文献   

14.
Early oxygenation of the terrestrial environment during the Mesoproterozoic   总被引:2,自引:0,他引:2  
Parnell J  Boyce AJ  Mark D  Bowden S  Spinks S 《Nature》2010,468(7321):290-293
Geochemical data from ancient sedimentary successions provide evidence for the progressive evolution of Earth's atmosphere and oceans. Key stages in increasing oxygenation are postulated for the Palaeoproterozoic era (~2.3?billion years ago, Gyr ago) and the late Proterozoic eon (about 0.8?Gyr ago), with the latter implicated in the subsequent metazoan evolutionary expansion. In support of this rise in oxygen concentrations, a large database shows a marked change in the bacterially mediated fractionation of seawater sulphate to sulphide of Δ(34)S?相似文献   

15.
Goldblatt C  Lenton TM  Watson AJ 《Nature》2006,443(7112):683-686
The history of the Earth has been characterized by a series of major transitions separated by long periods of relative stability. The largest chemical transition was the 'Great Oxidation', approximately 2.4 billion years ago, when atmospheric oxygen concentrations rose from less than 10(-5) of the present atmospheric level (PAL) to more than 0.01 PAL, and possibly to more than 0.1 PAL. This transition took place long after oxygenic photosynthesis is thought to have evolved, but the causes of this delay and of the Great Oxidation itself remain uncertain. Here we show that the origin of oxygenic photosynthesis gave rise to two simultaneously stable steady states for atmospheric oxygen. The existence of a low-oxygen (less than 10(-5) PAL) steady state explains how a reducing atmosphere persisted for at least 300 million years after the onset of oxygenic photosynthesis. The Great Oxidation can be understood as a switch to the high-oxygen (more than 5 x 10(-3) PAL) steady state. The bistability arises because ultraviolet shielding of the troposphere by ozone becomes effective once oxygen levels exceed 10(-5) PAL, causing a nonlinear increase in the lifetime of atmospheric oxygen. Our results indicate that the existence of oxygenic photosynthesis is not a sufficient condition for either an oxygen-rich atmosphere or the presence of an ozone layer, which has implications for detecting life on other planets using atmospheric analysis and for the evolution of multicellular life.  相似文献   

16.
Kranz anatomy is not essential for terrestrial C4 plant photosynthesis.   总被引:9,自引:0,他引:9  
An important adaptation to CO2-limited photosynthesis in cyanobacteria, algae and some plants was development of CO2-concentrating mechanisms (CCM). Evolution of a CCM occurred many times in flowering plants, beginning at least 15-20 million years ago, in response to atmospheric CO2 reduction, climate change, geological trends, and evolutionary diversification of species. In plants, this is achieved through a biochemical inorganic carbon pump called C4 photosynthesis, discovered 35 years ago. C4 photosynthesis is advantageous when limitations on carbon acquisition are imposed by high temperature, drought and saline conditions. It has been thought that a specialized leaf anatomy, composed of two, distinctive photosynthetic cell types (Kranz anatomy), is required for C4 photosynthesis. We provide evidence that C4 photosynthesis can function within a single photosynthetic cell in terrestrial plants. Borszczowia aralocaspica (Chenopodiaceae) has the photosynthetic features of C4 plants, yet lacks Kranz anatomy. This species accomplishes C4 photosynthesis through spatial compartmentation of photosynthetic enzymes, and by separation of two types of chloroplasts and other organelles in distinct positions within the chlorenchyma cell cytoplasm.  相似文献   

17.
Morphological and ecological complexity in early eukaryotic ecosystems.   总被引:18,自引:0,他引:18  
E J Javaux  A H Knoll  M R Walter 《Nature》2001,412(6842):66-69
Molecular phylogeny and biogeochemistry indicate that eukaryotes differentiated early in Earth history. Sequence comparisons of small-subunit ribosomal RNA genes suggest a deep evolutionary divergence of Eukarya and Archaea; C27-C29 steranes (derived from sterols synthesized by eukaryotes) and strong depletion of 13C (a biogeochemical signature of methanogenic Archaea) in 2,700 Myr old kerogens independently place a minimum age on this split. Steranes, large spheroidal microfossils, and rare macrofossils of possible eukaryotic origin occur in Palaeoproterozoic rocks. Until now, however, evidence for morphological and taxonomic diversification within the domain has generally been restricted to very late Mesoproterozoic and Neoproterozoic successions. Here we show that the cytoskeletal and ecological prerequisites for eukaryotic diversification were already established in eukaryotic microorganisms fossilized nearly 1,500 Myr ago in shales of the early Mesoproterozoic Roper Group in northern Australia.  相似文献   

18.
蓝藻是一类进行光合放氧的原核生物,蓝藻因其结构的特点,已经成为表达外源基因的理想宿主之一,而接合转移是蓝藻基因转移系统中普遍使用的一种方法。通过接合转移技术可以深入研究光合作用、细胞分化、氮固定和对环境的抵抗。介绍了有关蓝藻接合转移的载体、质粒以及接合转移在蓝藻中的应用,为蓝藻基因工程发展提供信息。  相似文献   

19.
Mojzsis SJ  Harrison TM  Pidgeon RT 《Nature》2001,409(6817):178-181
Granitoid gneisses and supracrustal rocks that are 3,800-4,000 Myr old are the oldest recognized exposures of continental crust. To obtain insight into conditions at the Earth's surface more than 4 Gyr ago requires the analysis of yet older rocks or their mineral remnants. Such an opportunity is presented by detrital zircons more than 4 Gyr old found within 3-Gyr-old quartzitic rocks in the Murchison District of Western Australia. Here we report in situ U-Pb and oxygen isotope results for such zircons that place constraints on the age and composition of their sources and may therefore provide information about the nature of the Earth's early surface. We find that 3,910-4,280 Myr old zircons have oxygen isotope (delta18O) values ranging from 5.4+/-0.6% to 15.0+/-0.4%. On the basis of these results, we postulate that the approximately 4,300-Myr-old zircons formed from magmas containing a significant component of re-worked continental crust that formed in the presence of water near the Earth's surface. These data are therefore consistent with the presence of a hydrosphere interacting with the crust by 4,300 Myr ago.  相似文献   

20.
Caldeira K  Kasting JF 《Nature》1992,360(6406):721-723
A decade ago, Lovelock and Whitfield raised the question of how much longer the biosphere can survive on Earth. They pointed out that, despite the current fossil-fuel induced increase in the atmospheric CO2 concentration, the long-term trend should be in the opposite direction: as increased solar luminosity warms the Earth, silicate rocks should weather more readily, causing atmospheric CO2 to decrease. In their model, atmospheric CO2 falls below the critical level for C3 photosynthesis, 150 parts per million (p.p.m.), in only 100 Myr, and this is assumed to mark the demise of the biosphere as a whole. Here, we re-examine this problem using a more elaborate model that includes a more accurate treatment of the greenhouse effect of CO2, a biologically mediated weathering parameterization, and the realization that C4 photosynthesis can persist to much lower concentrations of atmospheric CO2(<10 p.p.m.). We find that a C4-plant-based biosphere could survive for at least another 0.9 Gyr to 1.5 Gyr after the present time, depending respectively on whether CO2 or temperature is the limiting factor. Within an additional 1 Gyr, Earth may lose its water to space, thereby following the path of its sister planet, Venus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号