首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
电涡流位移传感器的载波信号和解调信号均为模拟处理信号,其测量和解调电路均会提高硬件电路复杂性和信号的不稳定性,并增大磁轴承系统的总体设计体积和功耗等。针对这一问题,该文设计了以调幅式电涡流位移传感器为基础的数字化电涡流位移传感器。利用现场可编程门阵列(FPGA)的数字输出信号设计传感器的载波信号,通过FPGA的软件设计对测量电路的输出信号进行数字化处理。该设计在有效降低电路设计复杂性和功耗的同时,提高了传感器测量的可靠性和精确性。  相似文献   

2.
电涡流检测技术是一种无损、无接触测量的检测技术。由于电涡流检测采用了具有结构简单、灵敏度高、测量线性范围大、抗干扰能力强、不受油污介质影响的电涡流传感器,因此在位移、厚度等方面的测量获得广泛的应用。作者在应用电涡流传感器测量位移时,为了正确可靠地测量位移量的大小,对电涡流位移传感器作了静态特性的测试分析。  相似文献   

3.
一种新型电涡流传感器的理论分析   总被引:8,自引:0,他引:8  
为提高普通电涡流传感器的灵敏度和增大检测距离,对一种新型电涡流传感器从理论上进行了分析.文中列出了重叠双线圈和同轴三线圈两种电涡流传感器的结构,并利用电磁场相关理论对同轴三线圈电涡流传感器及其设计进行了较详细地分析,并给出了测量电路单元.通过与普通电涡流传感器线圈进行仿真比较,得出了该结构电涡流传感器在长距离测量时的优缺点.  相似文献   

4.
设计了采用电涡流位移传感器测量喷水涡旋空气压缩机轴向间隙的实验方案和步骤.传感器采用偏移安装的方式,避免了动涡盘可能对传感器探头造成的损坏,并阐述了安装要点.编制了基于虚拟仪器技术的数据采集系统来记录和保存实验数据.测量结果表明:喷水涡旋空压机的轴向间隙在不同转速下变化较大,低转速和高转速下的典型值为75 ìm和49 ìm;涡旋空压机轴向间隙比涡旋制冷压缩机的轴向间隙大.测量结果输出波形的频率能够反映动涡盘掠过探头的时间间隔,因此可以用电涡流位移传感器测量涡旋压缩机的转速,提供了一种测量压缩机转速的方法,可对变速压缩机动态特性研究时转速值的确定提供帮助.总的来说,电涡流位移传感器结构简单、灵敏度高、静态和动态性能好、输出信号强,可以满足涡旋压缩机轴向间隙的小位移量的测量要求.  相似文献   

5.
电涡流传感器温度稳定性研究   总被引:12,自引:0,他引:12  
为了提高磁悬浮轴承高频电主轴控制系统中电涡流传感器的温度稳定性,针对恒频调幅式电涡流位移振动传感器,分析了电涡流传感器的基本结构和工作原理,建立了检测电路数学模型,找出了影响其温度稳定性的主要原因,并提出了对激励信号进行稳频、稳幅,尽量减小检测线圈等效损耗电阻以及差动补偿等提高温度稳定性的措施。作者在此基础上研制出的精密差动式电涡流位移振动传感器,在实际运行中温度系数达到2×10- 4℃- 1 以上,长期稳定性优于0.5% 。  相似文献   

6.
一种可准确测量大型设备位移与振幅的全自动电涡流微位移传感器,最近在西安新纪元机电技术有限公司研制成功。  相似文献   

7.
基于电涡流位移传感器测量原理,建立叶尖间隙的有限元模型.根据涡轮发动机等旋转叶片设备叶尖间隙的结构特征与测量需要,建立了具有矢量特性的叶片点阵模型.分析叶片厚度、叶片转速、传感器敏感区大小、信号采样速率引起的空间滤波效应,以及对叶尖间隙测量结果的影响.研究结果表明,一定叶片厚度情况下,叶片转速、传感器敏感区、信号采样速率存在最低要求,这一结论可为叶尖间隙测量系统设计提供重要理论依据.  相似文献   

8.
高速磁悬浮转轴间隙的精确测量是磁悬浮转轴系统可靠工作的重要保障.电涡流位移传感器被广泛应用于这种间隙的测量.由于磁悬浮转轴系统空间有限,所以要求传感器既要有很高的灵敏度同时检测线圈的尺寸要尽可能缩小,为此提出了1种电涡流位移传感器检测线圈的多参数设计方法.该方法利用线圈的品质因数和所激发的磁感应强度梯度以及线圈导线的总长度3个参数构成1个优化函数,并采用遗传算法求解该函数,从而得到了最佳的检测线圈尺寸.通过MATLAB仿真已验证了该方法的有效性.  相似文献   

9.
在两只同轴电磁耦合线圈之间插入一只无源谐振线圈,可利用谐振耦合显著提高能量传输效率。为探索这种谐振增强效应在传感器领域的应用可能性,制作了一只与测量电路无任何引线连接的、由电感线圈及电容串联组成的无源LC谐振器,放置于电涡流位移传感器探测线圈与金属目标靶间的测量通道中。实验结果表明:当传感器工作在该谐振器的谐振频率点附近时,有效探测距离和灵敏度会得到显著增强。进一步针对发射-接收式双线圈位移检测系统进行了实验,结果同样证实了无源LC谐振器介入后的谐振增强作用。该结论对于其他带有电感耦合线圈的传感系统同样具有参考价值。  相似文献   

10.
给出了一种数字式光纤Mach Zehnder干涉测量实验系统.基于光纤相位传感原理,设计了数字式相位检测电路以及压力、温度、位移的功能型光纤传感器.标定实验的结果表明,压力、温度和位移传感器的测量分辨率分别为0.03kPa、0.07℃、2.5μm.  相似文献   

11.
涡流传感器具有对介质不敏感、非接触的特点,广泛应用于金属检测中。本文研究一种基于调频式涡流传感器的金属微位移检测电路,采用最小二乘法处理实测数据,探索位移与检测信号的线性关系,实测数据的拟合曲线表明,该电路能在0到4.2 mm小位移内呈现比较好的线性关系。  相似文献   

12.
通过传感器结构的合理设计,脉冲远场涡流可用于飞机机身非磁性金属结构中缺陷的检测,但是,传统远场涡流信号微弱,检测灵敏度不高,因此,如何实现对远场涡流的磁场抑制与信号增强,从而改进和提高其检测能力是一个关键问题。本文从抑制远场涡流磁场直接耦合分量的角度出发,仿真设计了带有不同屏蔽结构的传感器模型,分析了不同材料的屏蔽效果,比较了不同模型的缺陷检测灵敏度以及对大厚度平板的检测能力。研究结果表明,基于高导磁材料屏蔽盘的连通磁路传感器对直接耦合分量具有较好的抑制作用,可以缩短过渡区,拉近激励与检测线圈间的距离,提高缺陷的检测灵敏度,其对非磁性平板的检测厚度可扩展至25mm。  相似文献   

13.
针对传统的管道变形内检测探头环向检测面积较小的问题,在磁旋转编码检测技术的基础上,结合电涡流检测技术,研制了一种涡流变形内检测探头。文中首先介绍了电涡流管道变形检测的理论基础,设计了管道涡流变形检测探头的机械结构及电路系统,利用有限元方法得到探头与被测件距离d的增加引起传感器输出电压峰值信号呈现非线性减小的变化规律,同时研究了激励信号峰值和激励线圈内径变化对d值检测的影响。后进行实验验证,结果表明基于电涡流检测技术的管道变形检测具有可行性,实验测量精度达到1mm。该检测探头的研制对于提高管道变形内检测环向检测精度、降低检测成本具有一定的意义。  相似文献   

14.
本文从焊条偏心测量传感器的微型化入手 ,用电涡流传感器替代传统的电感式传感器 ,利用测量电路的输出电压与焊芯至传感器端面间距离的线性关系 ,将焊条的偏心量转换成高频载波电信号 ,并配置了相应的显示电路和报警电路 ,使焊条生产中出现的焊条偏心能及时得以发现 ,为实现焊条涂压机偏心调整的自动化奠定了基础。  相似文献   

15.
保温管的偏心检测对防腐保温管的生产质量及使用寿命有重要影响。基于偏心检测的原理,提出了一种可消除管道自身形变的涡流传感器布置方式。利用电磁场数值计算方法,对非轴对称涡流场模型进行了数值分析,求得了管道表面的涡流密度与磁感应强度;并验证模型的正确性,分析了管径大小、激励频率对偏心检测中涡流传感器灵敏度的影响。理论上为保温管偏心检测涡流传感器激励频率的选择以及信号的误差分析提供了参考。  相似文献   

16.
设计并研制了一种采用平面PCB板工艺制作的线圈阵列式电涡流传感器,包括采用计算公式确定了平面圆形螺旋线圈的相关参数;采用ANSOFT有限元软件进行仿真,分析了试件裂纹缺陷处涡流场的分布状态;以非铁磁性材料铝板作为被测试件,对其上的预制裂纹进行检测,证明了这种平面线圈阵列传感器工作的有效性. 结果表明,这种平面线圈阵列式电涡流传感器能够有效检测铝板上的微小裂纹,且信号幅值等输出信号参数和裂纹的几何参数之间具有较好的相关性.   相似文献   

17.
提出了基于Kalman滤波器的多频电涡流信号解调方法.该方法对含有多个频率分量的模拟信号进行直接采样,通过Kalman滤波器递推算法,实时同步解调多个检测频率分量的相位幅值等特征量信息.与传统的模拟相敏检波和数字相敏检波方法比,该方法无需硬件解调电路,电路结构简单,理论上可以软件灵活配置任意多个频点参数,不再依赖于具体硬件电路.  相似文献   

18.
在Windows XP系统平台下,采用PCI2010数据采集卡设计了多通道涡流探伤仪。通过正交分解法得出涡流信号的相角和幅值,并给出了PCI2010与涡流探伤电路进行对接的技术方案。实验结果表明,该探伤仪探测钢管速度最高能达到100 m/min,误报率控制在1%以下,基本不漏报,高于国家标准。  相似文献   

19.
在分析脉冲远场涡流检测原理的基础上,采用U型罩结构模拟管道,成功的将脉冲远场涡流技术应用到了非磁性金属平板的检测中;仿真设计了空心、聚磁、连通磁路3种传感器模型,比较了不同模型过渡区的远近、对缺陷检测的灵敏度及对不同厚度平板的检测能力.仿真结果表明:带连通磁路的传感器模型不仅可以将激励与检测线圈之间的距离从20 mm缩短至10 mm,还可以提高对缺陷检测的灵敏度,同时,带连通磁路的传感器模型对厚度为11 mm以上的平板具有更强的检测能力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号