首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
D E Staunton  M L Dustin  T A Springer 《Nature》1989,339(6219):61-64
The leukocyte adhesion molecule LFA-1 mediates a wide range of lymphocyte, monocyte, natural killer cell, and granulocyte interactions with other cells in immunity and inflammation. LFA-1 (CD11a/CD18) is a receptor for intercellular adhesion molecule 1 (ICAM-1, CD54), a surface molecule which is constitutively expressed on some tissues and induced on other in inflammation. Induction of ICAM-1 on epithelial cells, endothelial cells and fibroblasts mediates LFA-1-dependent adhesion of lymphocytes. Several lines of evidence have suggested the existence of a second LFA-1 ligand: homotypic adhesion of one cell line was inhibited by a monoclonal antibody to LFA-1, but not by one to ICAM-1; there exists an LFA-1-dependent, ICAM-1-independent pathway of adhesion to endothelial cells; and also, there are some types of target cells in which LFA-1-dependent T-lymphocyte adhesion and lysis are independent of ICAM-1. We have cloned this second ligand, designated ICAM-2, using a novel method for identifying ligands of adhesion molecules. ICAM-2 is an integral membrane protein with two immunoglobulin-like domains, whereas ICAM-1 has five. Remarkably, ICAM-2 is much more closely related to the two most N-terminal domains of ICAM-1 (34% identity) than either ICAM-1 or ICAM-2 is to other members of the immunoglobulin superfamily, demonstrating the existence of a subfamily of immunoglobulin-like ligands that bind the same integrin receptor.  相似文献   

2.
A Peterson  B Seed 《Nature》1987,329(6142):842-846
The human T cell erythrocyte receptor (CD2 antigen) allows thymocytes and mature T cells to adhere to thymic epithelium and target cells through a cell surface protein, LFA-3 (refs 1-6). Monoclonal antibodies recognizing CD2 can either block adhesion or, in certain combinations, induce an antigen-independent T cell activation. We have identified the binding sites for 16 monoclonal antibodies against CD2 by a rapid and generally applicable mutational analysis. The binding sites fall in three discrete regions: antibodies that participate in activation and block erythrocyte adhesion bind to the first region; antibodies that block adhesion bind to the second region; and antibodies that participate in activation but do not block adhesion bind to the third region. A large number of mutations selected for loss of antibody reactivity in the first two regions also weaken the CD2-LFA-3 interaction. Good agreement was observed between mutational lesions blocking LFA-3 binding and lesions blocking binding by activating antibodies, which supports the view that such antibodies induce T cell activation by mimicking the effect of LFA-3 binding. CD2 sequences that participate in LFA-3 binding correspond to immunoglobulin variable region hypervariable sequences when the homologous domains are aligned.  相似文献   

3.
The lymphocyte function-associated molecule LFA-1 (CD11a/CD18) plays a key part in lymphocyte adhesion. Lymphocytes do not adhere spontaneously; activation of protein kinase C (PKC) by phorbol esters, however, gives rise to strong LFA-1-dependent adhesion, indicating that activation of LFA-1 is required to induce cell adhesion. We have now investigated whether the functionally important CD2 and CD3 surface structures on T lymphocytes are involved in the activation of LFA-1. The stimulation of these molecules, which causes activation of PKC, strongly promoted LFA-1-dependent adhesion. Furthermore, we demonstrate by using cells from an LFA-1-deficient patient that this enhanced lymphocyte adhesion is caused by activation of the LFA-1 molecule and not by activation of its ligands. LFA-1 was persistently activated by triggering through CD2 but only transiently by triggering through CD3. We postulate that CD2 and CD3 can differentially regulate the affinity of LFA-1 for its ligands by modulating its molecular conformation through PKC-dependent mechanisms.  相似文献   

4.
Lymphocyte function-associated antigen-1 (LFA-1) is a heterodimer composed of an alpha and beta chain that is expressed on the surface of most leukocytes and is an essential molecule for adhesion reactions between cells participating in the immune response. A putative ligand for LFA-1 is the intercellular adhesion molecule ICAM-1 (refs 3-5). Leukocyte adhesion abnormality is found in patients with LFA-1 deficiency. It is not clear whether binding of ligand to the LFA-1 molecule merely spatially orientates cells towards each other or can also induce signals that regulate cell activation and differentiation. We have recently developed a T-cell proliferation assay which uses immobilized anti-CD3 monoclonal antibodies as stimulant and is independent of LFA-1-mediated cellular adhesion. As there is no interference by anti-LFA-1 monoclonal antibodies with the adhesion-dependent activation steps, this T-cell activation system allows us to investigate whether transmembrane signals are induced by binding of ligand to LFA-1 on T cells. Our data indicate that binding of ligand to LFA-1 results in the transduction of regulatory signal across the plasma membrane, rather like other molecules (CD2, CD4, CD8) (refs 8-11) with signal-modifying properties involved in the adhesion of T cells to target/stimulator cells. Indeed, adhesion molecules might generally be important in signal transduction, even in cells not belonging to the immune system.  相似文献   

5.
CD2-mediated adhesion facilitates T lymphocyte antigen recognition function   总被引:25,自引:0,他引:25  
The CD2 T lymphocyte-surface glycoprotein serves to mediate adhesion between T lymphocytes and their cognate cellular partners which express the specific ligand LFA-3. In addition, CD2 by itself or in conjunction with T-cell receptor stimulation, transduces signals resulting in T-lymphocyte activation. One or both of these functions seems to be physiologically important, given that certain anti-CD2 monoclonal antibodies block T-cell activation and that antigen-responsive memory T cells express a high level of CD2 relative to virgin T cells, which are largely antigen-unresponsive. Nevertheless, the contribution of the individual CD2 functions in T-cell responses has not been independently examined. To this end, human CD2 complementary DNAs encoding an intact LFA-3-binding adhesion domain, but lacking a functional cytoplasmic signal transduction element (CD2trans-), were introduced into an ovalbumin-specific, I-Ad restricted murine T-cell hybridoma. The antigen-specific response of T hybridoma cells expressing human CD2trans- protein was enhanced up to 400% when the human LFA-3 ligand was introduced into the I-Ad expressing murine antigen-presenting cells. In contrast, no augmentation was observed if human LFA-3 was absent or expressed on a third-party cell lacking the I-Ad restriction element. These results directly demonstrate the functional significance of adhesion events mediated between CD2 on the antigen-responsive T lymphocyte and LFA-3 on the presenting cell in optimizing antigen-specific T-cell activation.  相似文献   

6.
ICAM-1 a ligand for LFA-1-dependent adhesion of B, T and myeloid cells   总被引:60,自引:0,他引:60  
Cell-cell adhesion is essential for many immunological functions. The LFA-1 molecule, a member of a superfamily of adhesion molecules, participates in adhesion which is critical to the function of each of the three major subsets of leukocytes: lymphocytes, monocytes and granulocytes. Putative LFA-1 ligands have been identified functionally in different laboratories using three different monoclonal antibodies that inhibit LFA-1-mediated leukocyte adhesion in particular model systems; however, there may be more than one LFA-1 ligand. We have directly compared the three relevant monoclonal antibodies, and show that each binds to the same molecule, intercellular-adhesion molecule-1 (ICAM-1). Most important, B, T and myeloid cells adhere specifically to purified ICAM-1-coated surfaces; such adhesion has distinctive requirements for Mg2+ and Ca2+. This constitutes biochemical evidence that ICAM-1 functions as a ligand for LFA-1-dependent adhesion by a variety of leukocytes.  相似文献   

7.
N Shinohara  M Watanabe  D H Sachs  N Hozumi 《Nature》1988,336(6198):481-484
Cytolytic T lymphocytes (CTLs) are generally thought to recognize cellular antigens presented by class I MHC molecules. A number of studies, however, have revealed responses of considerable magnitude involving both CD8+ and CD4+ CTLs with class II restriction, suggesting that class II-restricted CTLs recognizing exogeneous protein antigens may exist. As class II antigens are normally expressed on limited types of cells such as B cells and macrophages, such CTLs might be expected to exert a suppressive effect on antibody responses. Here we report that stimulation of mouse lymphocytes with a soluble antigen induced CD8+ and CD4+ CTLs specific for the antigen with class II restriction. The specific lysis was far more efficient when target B cells specifically recognized the antigen than when they did not, indicating that the primary targets for these CTLs are probably B cells expressing immunoglobulin receptors reactive for the same antigen molecule. These results suggest that the natural occurrence of such CTLs during immune responses may explain antigen-specific suppression on antibody responses by T cells.  相似文献   

8.
The T lymphocyte glycoprotein CD2 binds the cell surface ligand LFA-3   总被引:15,自引:0,他引:15  
CD2 (known also as T11 (ref. 1), LFA-2 (ref. 2) and the erythrocyte rosette receptor (ref. 3] is a functionally important T lymphocyte surface glycoprotein of relative molecular mass 50,000 to 58,000 (Mr 50-58 K) which appears early in thymocyte ontogeny and is present on all mature T cells. Monoclonal antibodies to CD2 inhibit cytotoxic T-lymphocyte (CTL)-mediated killing by binding to the T lymphocyte and blocking adhesion to the target cell. Such antibodies also inhibit T helper cell responses including antigen-stimulated proliferation, interleukin-2 (IL-2) secretion, and IL-2 receptor expression. Certain combinations of monoclonal antibodies to CD2 epitopes trigger proliferation of peripheral blood T lymphocytes, cytotoxic effector function and expression of IL-2 receptors by thymocytes, resulting in thymocyte proliferation in the presence of exogenous IL-2 (ref. 11). These findings suggest that CD2 can function in signalling as well as being an adhesion molecule. To understand the role of CD2 in T-cell adhesion and activation, it is essential to define its natural ligand. Our previous observation that purified CD2 inhibits rosetting of T lymphocytes with sheep erythrocytes and can be absorbed by sheep erythrocytes suggested it also might bind with detectable affinity to human cells. We now report that CD2 binds to a cell-surface antigen known as lymphocyte function-associated antigen-3 (LFA-3) with high affinity, and can mediate adhesion of lymphoid cells via interaction with LFA-3.  相似文献   

9.
D M Altmann  N Hogg  J Trowsdale  D Wilkinson 《Nature》1989,338(6215):512-514
The initiation of a specific immune response is believed to require not only activation through antigen-specific receptors on T cells and B cells but also antigen-independent interactions between accessory molecules. One such molecule is LFA-1, which enhances the avidity of interactions between T cells and antigen-presenting cells, and is possibly involved in signal transduction across the T-cell membrane. Intercellular adhesion molecule-1 (ICAM-1), a surface glycoprotein of relative molecular mass (Mr) 80,000-110,000, has been defined as a ligand for LFA-1, and has been shown to participate in the interaction between T cells and monocytes. The determination of the precise contribution of such accessory molecules to antigen presentation, however, is complicated by the need to analyse against a background of multiple molecular interactions. We have investigated the role of LFA-1/ICAM-1 interactions in antigen presentation directly by quantifying the contribution of ICAM-1 expression to T-cell stimulation using L-cell transfectants that co-express ICAM-1 and HLA-DR. In the case of transfectants expressing modest levels of HLA-DR, co-expression of ICAM-1 is critical for effective HLA class II-restricted and allospecific T-cell activation, pointing to an important role for ICAM-1 in the induction of T-cell responses.  相似文献   

10.
B Seed 《Nature》1987,329(6142):840-842
Recently the human T cell erythrocyte receptor CD2 has been shown to bind human erythrocytes through LFA-3, a heavily glycosylated surface protein of broad tissue distribution. CD2-LFA-3 interactions are important for cytolytic conjugate formation, for thymocyte adhesion, and for T cell activation. A complementary DNA clone encoding LFA-3 was isolated using a complementary DNA clone encoding LFA-3 was isolated using a novel transient expression system of mouse cells. The cDNA encodes a phospholipid-linked membrane protein whose extracellular domain shares significant homology with CD2. As CD2 is homologous with the neural cell adhesion molecule NCAM in immunoglobulin-like domains, cellular adhesion molecules in both neural and lymphoid tissues could have a common ancestor.  相似文献   

11.
The T11 sheep erythrocyte binding glycoprotein [relative molecular mass (Mr)50,000(50K)] is expressed throughout human T-lymphocyte ontogeny and appears to play an important physiological role in T-cell activation. Thus, the treatment of T cells with certain monoclonal anti-T11 antibodies results in antigen-independent polyclonal T-cell activation as assessed by proliferation and lymphokine secretion. In addition, the majority of thymocytes that have not yet acquired the T3-Ti antigen/major histocompatibility complex (MHC) receptor can be activated to express interleukin-2 (IL-2) receptors through this T11 structure. We show here that the triggering of cytolytic T (Tc) cells via T11 causes an antigen-independent activation of the cytolytic mechanism as evidenced by the induction of nonspecific cytolytic activity. Furthermore, T11+T3-Ti- natural killer (NK) cell clones can also be induced to lyse NK-cell-resistant targets by treatment with anti-T11 monoclonal antibodies directed at defined T11 epitopes. These results indicate that T11 triggering can activate cytotoxic lymphocytes to express their functional programmes in the absence of specific antigen recognition via the T3-Ti complex and provide further evidence for the notion that certain NK cells and T lymphocytes are related.  相似文献   

12.
The induction of an ensemble of adhesion molecules on endothelial cells by inflammatory cytokines is likely to be crucial to the differential migration of T-lymphocyte subsets into inflammatory sites. Two molecular pathways involving the VLA-4 and LFA-1 integrins are known to mediate T-cell adhesion to activated endothelium. Here we show that a third pathway involving the rapidly inducible endothelial cell-surface adhesion molecule ELAM-1 contributes to the binding of resting CD4+ T cells to IL-1-induced human endothelial cells. All three pathways contribute to the greater adhesion to endothelium of memory T cells than naive T cells. There are two unique features of T-cell adhesion to purified ELAM-1: first, ELAM-1 exclusively mediates adhesion of memory T cells; second, memory T-cell binding to ELAM-1 is independent of acute activation events that regulate integrin-mediated adhesion. Thus, ELAM-1 may be of primary importance in the initial attachment of memory T cells to inflamed endothelium in vivo and to the preferential migration of memory T cells into tissue and inflammatory sites.  相似文献   

13.
T-cell receptor cross-linking transiently stimulates adhesiveness through LFA-1   总被引:176,自引:0,他引:176  
M L Dustin  T A Springer 《Nature》1989,341(6243):619-624
Effective interaction between T cells and their targets requires that recognition of specific antigen be coordinated with increased cell-cell adhesion. We show that antigen-receptor cross-linking increases the strength of the adhesion mechanism between lymphocyte function-associated molecule-1 (LFA-1) and intercellular adhesion molecules (ICAMs), with intracellular signals transmitted from the T-cell antigen receptor to the LFA-1 adhesion molecule. The increase in avidity is rapid and transient, providing a dynamic mechanism for antigen-specific regulation of lymphocyte adhesion and de-adhesion.  相似文献   

14.
Thy-1-mediated T-cell activation requires co-expression of CD3/Ti complex   总被引:6,自引:0,他引:6  
In addition to monoclonal antibodies against the CD3 (T3)-T-cell antigen receptor (CD3/Ti) complex, several other monoclonals directed towards distinct cell surface structures on human (CD2 (T11) and Tp44) and murine (Thy-1, TAP, and Ly-6) T lymphocytes are capable of activating T cells. It has been proposed that such structures may function as alternative pathways of stimulation. To examine directly whether any relationship exists between Thy-1-dependent activation phenomena and T-cell activation mediated through the CD3/Ti complex, we have transfected several CD3/Ti- variants of the human T-cell line Jurkat with the murine Thy-1.2 gene. Our data indicate that in CD3/Ti-, Thy-1.2+ transfectants, monoclonal antibodies against Thy-1.2 can induce a rise in cytoplasmic free calcium ([Ca2+]i), but fail to stimulate interleukin-2 (IL-2) production. The only defect in these variant cell lines responsible for the inability to produce IL-2 in response to Thy-1 stimulation was in the expression of the CD3/Ti complex, because replacement of defective Ti alpha- or beta-chain genes reconstributed both surface expression of CD3/Ti and responsiveness to Thy-1 in the IL-2 production assay.  相似文献   

15.
Structure of domain 1 of rat T lymphocyte CD2 antigen.   总被引:11,自引:0,他引:11  
The CD2 antigen is largely restricted to cells of the T-lymphocyte lineage and has been established as an important adhesion molecule in interactions between human T lymphocytes and accessory cells. In the adhesion reaction, CD2 on T cells binds to LFA-3 on other cells, with binding through domain 1 of CD2. CD2 can also be a target for the delivery of mitogenic signals to T lymphocytes cultured with combinations of anti-CD2 antibodies. Two predictions that are contradictory have been made for the structure of CD2 domain 1. One suggests an immunoglobulin (Ig) fold, on the basis of sequence patterns conserved in the Ig-superfamily (IgSF), whilst the other proposes a pattern of alternating alpha-helices and beta-strands, on the basis of secondary structure predictions. Thus CD2 domain 1 is an important test case for the validity of IgSF assignments based on sequence patterns. We report here the expression of domain 1 of rat CD2 in an Escherichia coli expression system and have determined a low-resolution solution structure by NMR spectroscopy.  相似文献   

16.
The co-ordinated function of effector and accessory cells in the immune system is assisted by adhesion molecules on the cell surface that stabilize interactions between different cell types. Leukocyte function-associated antigen 1 (LFA-1) is expressed on the surface of all white blood cells and is a receptor for intercellular adhesion molecules (ICAM) 1 and 2 (ref. 3) which are members of the immunoglobulin superfamily. The interaction of LFA-1 with ICAMs 1 and 2 provides essential accessory adhesion signals in many immune interactions, including those between T and B lymphocytes and cytotoxic T cells and their targets. In addition, both ICAMs are expressed at low levels on resting vascular endothelium; ICAM-1 is strongly upregulated by cytokine stimulation and plays a key role in the arrest of leukocytes in blood vessels at sites of inflammation and injury. Recent work has indicated that resting leukocytes express a third ligand, ICAM-3, for LFA-1 (refs 11, 12). ICAM-3 is potentially the most important ligand for LFA-1 in the initiation of the immune response because the expression of ICAM-1 on resting leukocytes is low. We report the expression cloning of a complementary DNA, pICAM-3, encoding a protein constitutively expressed on all leukocytes, which binds LFA-1. ICAM-3 is closely related to ICAM-1, consists of five immunoglobulin domains, and binds LFA-1 through its two N-terminal domains.  相似文献   

17.
The molecular basis of target cell recognition by CD3- natural killer (NK) cells is poorly understood, despite the ability of NK cells to lyse specific tumour cells. In general, target cell major histocompatibility complex (MHC) class I antigen expression correlates with resistance to NK cell-mediated lysis, possibly because NK cell-surface molecules engage MHC class I antigens and consequently deliver inhibitory signals. Natural killer cell allospecificity involves the MHC class I peptide-binding cleft, and further understanding of this allospecificity should provide insight into the molecular mechanisms of NK cell recognition. The Ly-49 cell surface molecular mechanisms of NK cell recognition. The Ly-49 cell surface molecule is expressed by 20% of CD3- NK cells in C57BL/6 mice (H-2b). Here we show that C57BL/6-derived, interleukin-2-activated NK cells expressing Ly-49 do not lyse target cells displaying H-2d or H-2k despite efficient spontaneous lysis by Ly-49- effector cells. This preferential resistance correlates with expression of target cell MHC class I antigens. Transfection and expression of H-2Dd, but not H-2Kd or H-2Ld, renders a susceptible target (H-2b) resistant to Ly-49+ effector cells. The transfected resistance is abrogated by monoclonal antibodies directed against Ly-49 or the alpha 1/alpha 2 domains of H-2Dd, suggesting that Ly-49 specifically interacts with the peptide-binding domains of the MHC class I alloantigen, H-2Dd. Inasmuch as Ly-49+ effector cells cannot be stimulated to lyse H-2Dd targets, our results indicate that NK cells may possess inhibitory receptors that specifically recognize MHC class I antigens.  相似文献   

18.
Human cluster-of-differentiation 1 (CD1) is a family of cell surface glycoproteins of unknown function expressed on immature thymocytes, epidermal Langerhans cells and a subset of B lymphocytes. Three homologous proteins, CD1a, b and c, have been defined serologically, and the CD1 gene locus on human chromosome 1 contains five potential CD1 genes. Analysis of the predicted amino-acid sequences of CD1 molecules reveals a low but significant level of homology to major histocompatibility complex (MHC) class I and class II molecules, and, like MHC class I molecules, CD1 molecules are associated non-covalently with beta 2-microglobulin. These structural similarities to known antigen-presenting molecules, together with the expression of CD1 on cells capable of antigen presentation, suggest a role for CD1 molecules in antigen recognition by T cells. Here we demonstrate the specific recognition of CD1a by a CD4-CD8- alpha beta T-cell receptor (TCR) expressing cytolytic T lymphocyte (CTL) line and the specific recognition of CD1c by a CD4-CD8- gamma delta TCR CTL line. The interaction of CD1-specific CTLs with CD1+ target cells appeared to involve the CD3-TCR complex, and did not show evidence of MHC restriction. These results suggest that for a subset of T cells, CD1 molecules serve a function analogous to that of MHC class I and II molecules.  相似文献   

19.
Functional impairment and selective depletion of CD4+ T cells, the hallmark of AIDS, are at least partly caused by human immunodeficiency virus (HIV-1) type 1 binding to the CD4 molecule and infecting CD4+ cells. It may, therefore, be of therapeutic value to target an antiviral agent to CD4+ cells to prevent infection and to inhibit HIV-1 production in patients' CD4+ cells which contain proviral DNA. We report here that HIV-1 replication in normal primary CD4+ T cells can be inhibited by pokeweed antiviral protein, a plant protein of relative molecular mass 30,000, which inhibits replication of certain plant RNA viruses, and of herpes simplex virus, poliovirus and influenza virus. Targeting pokeweed antiviral protein to CD4+ T cells by conjugating it to monoclonal antibodies reactive with CD5, CD7 or CD4 expressed on CD4+ cells, increased its anti-HIV potency up to 1,000-fold. HIV-1 replication is inhibited at picomolar concentrations of conjugates of pokeweed antiviral protein and monoclonal antibodies, which do not inhibit proliferation of normal CD4+ T cells or CD4-dependent responses. These conjugates inhibit HIV-1 protein synthesis and also strongly inhibit HIV-1 production in activated CD4+ T cells from infected patients.  相似文献   

20.
T lymphocytes can be activated by various stimuli directed either against the T-cell antigen receptor-CD3 antigen complex (Ti-CD3) or the CD2 molecule; see ref. 1 for a review. Activation signals generated by antigen binding to the antigen-specific alpha/beta heterodimer (Ti) are thought to be transduced via the invariant CD3 gamma, epsilon and delta chains, and the associated zeta and eta subunits. The physiological role of the interaction of CD2 with its homologous cell-surface associated ligand LFA-3 remains to be fully elucidated. It has been suggested that CD2 regulates an antigen-independent pathway of activation or that signals delivered via CD2 are an integral part of the antigen-specific pathway. Several recent studies have indicated a requirement for the Ti-CD3 complex in CD2 signalling. Thus, mutant T-cell lines expressing CD2, but not Ti-CD3, on the cell surface cannot be activated via the CD2 molecules. Functional interaction between the Ti-CD3 complex and the CD2 antigen suggests that these T-lymphocyte cell-surface structures are physically associated. Here we use a digitonin-based solubilization procedure to explore this possibility and show that 40% of the cell-surface CD2 molecules can be specifically co-precipitated in association with the Ti-CD3 complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号