首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Volatility models such as GARCH, although misspecified with respect to the data‐generating process, may well generate volatility forecasts that are unconditionally unbiased. In other words, they generate variance forecasts that, on average, are equal to the integrated variance. However, many applications in finance require a measure of return volatility that is a non‐linear function of the variance of returns, rather than of the variance itself. Even if a volatility model generates forecasts of the integrated variance that are unbiased, non‐linear transformations of these forecasts will be biased estimators of the same non‐linear transformations of the integrated variance because of Jensen's inequality. In this paper, we derive an analytical approximation for the unconditional bias of estimators of non‐linear transformations of the integrated variance. This bias is a function of the volatility of the forecast variance and the volatility of the integrated variance, and depends on the concavity of the non‐linear transformation. In order to estimate the volatility of the unobserved integrated variance, we employ recent results from the realized volatility literature. As an illustration, we estimate the unconditional bias for both in‐sample and out‐of‐sample forecasts of three non‐linear transformations of the integrated standard deviation of returns for three exchange rate return series, where a GARCH(1, 1) model is used to forecast the integrated variance. Our estimation results suggest that, in practice, the bias can be substantial. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
While much research related to forecasting return volatility does so in a univariate setting, this paper includes proxies for information flows to forecast intra‐day volatility for the IBEX 35 futures market. The belief is that volume or the number of transactions conveys important information about the market that may be useful in forecasting. Our results suggest that augmenting a variety of GARCH‐type models with these proxies lead to improved forecasts across a range of intra‐day frequencies. Furthermore, our results present an interesting picture whereby the PARCH model generally performs well at the highest frequencies and shorter forecasting horizons, whereas the component model performs well at lower frequencies and longer forecast horizons. Both models attempt to capture long memory; the PARCH model allows for exponential decay in the autocorrelation function, while the component model captures trend volatility, which dominates over a longer horizon. These characteristics are likely to explain the success of each model. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
This article develops and extends previous investigations on the temporal aggregation of ARMA predications. Given a basic ARMA model for disaggregated data, two sets of predictors may be constructed for future temporal aggregates: predictions based on models utilizing aggregated data or on models constructed from disaggregated data for which forecasts are updated as soon as the new information becomes available. We show that considerable gains in efficiency based on mean‐square‐error‐type criteria can be obtained for short‐term predications when using models based on updated disaggregated data. However, as the prediction horizon increases, the gain in using updated disaggregated data diminishes substantially. In addition to theoretical results associated with forecast efficiency of ARMA models, we also illustrate our findings with two well‐known time series. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
The most common approach to combining forecasts at different levels of aggregation has been to sum (or average) the more disaggregated forecast, and take a weighted average of the aggregate forecasts. This paper develops a simple method for obtaining minimum variance pooled forecasts at the disaggregated level. The major advantage that this method has over the common approach is that it provides pooled forecasts at both the aggregated and disaggregated level. As will be shown, the resulting aggregate pooled forecast is identical to the forecast which would be obtained by simply pooling two forecasts at the aggregate level, while the disaggregated forecast maintains the aggregation identity required by the problem.  相似文献   

5.
This paper compares the information content of realized measures constructed from high‐frequency data and implied volatilities from options in the context of forecasting volatility. The comparison is based on within‐sample and out‐of‐sample (over horizons of 1–22 days) forecasts of daily S&P 500 index return volatility. The paper adds to the findings of previous studies, by considering recent developments in the related practice and the literature. It is shown that, for within‐sample fitting, the realized measure is more informative than the implied volatility. In contrast, the implied volatility is more informative than the realized measure for out‐of‐sample forecasting, in particular for multi‐step‐ahead forecasting. Moreover, we show that it is helpful to use all the information provided by the realized measure and the implied volatility for the within‐sample fitting. For multi‐step‐ahead forecasting, however, it is better to use only the implied volatility. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Volatility forecasting remains an active area of research with no current consensus as to the model that provides the most accurate forecasts, though Hansen and Lunde (2005) have argued that in the context of daily exchange rate returns nothing can beat a GARCH(1,1) model. This paper extends that line of research by utilizing intra‐day data and obtaining daily volatility forecasts from a range of models based upon the higher‐frequency data. The volatility forecasts are appraised using four different measures of ‘true’ volatility and further evaluated using regression tests of predictive power, forecast encompassing and forecast combination. Our results show that the daily GARCH(1,1) model is largely inferior to all other models, whereas the intra‐day unadjusted‐data GARCH(1,1) model generally provides superior forecasts compared to all other models. Hence, while it appears that a daily GARCH(1,1) model can be beaten in obtaining accurate daily volatility forecasts, an intra‐day GARCH(1,1) model cannot be. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
This paper addresses the issue of forecasting individual items within a product line; where each line includes several independent but closely related products. The purpose of the research was to reduce the overall forecasting burden by developing and assessing schemes of disaggregating forecasts of a total product line to the related individual items. Measures were developed to determine appropriate disaggregated methodologies and to compare the forecast accuracy of individual product forecasts versus disaggregated totals. Several of the procedures used were based upon extensions of the combination of forecast research and applied to disaggregations of total forecasts of product lines. The objective was to identify situations when it was advantageous to produce disaggregated forecasts, and if advantageous, which method of disaggregation to utilize. This involved identification of the general conceptual characteristics within a set of product line data that might cause a disaggregation method to produce relatively accurate forecasts. These conceptual characteristics provided guidelines for forecasters on how to select a disaggregation method and under what conditions a particular method is applicable.  相似文献   

8.
This paper examines the lead-lag relationship between the spot index and futures price of the Nikkei Stock Average. Using daily data in the post-crash period we investigate the interaction between the spot and futures series through the error correction model. Two versions of error correction models are considered, depending on the postulated long-run equilibrium relationship. It is found that lagged changes in the futures price affect the short-term adjustment in the spot index, but not vice versa. Forecasting models for the spot index are also constructed using the univariate time series approach and the vector autoregressive method. For the post-sample forecast comparison the error correction models produce the best results. The vector autoregressive method performs better than the martingale model, while the univariate time series method gives the poorest forecasts.  相似文献   

9.
Recent studies suggest realized volatility provides forecasts that are as good as option‐implied volatilities, with improvement stemming from the use of high‐frequency data instead of a long‐memory specification. This paper examines whether volatility persistence can be captured by a longer dataset consisting of over 15 years of intra‐day data. Volatility forecasts are evaluated using four exchange rates (AUD/USD, EUR/USD, GBP/USD, USD/JPY) over horizons ranging from 1 day to 3 months, using an expanded set of short‐range and long‐range dependence models. The empirical results provide additional evidence that significant incremental information is found in historical forecasts, beyond the implied volatility information for all forecast horizons. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
The availability of numerous modeling approaches for volatility forecasting leads to model uncertainty for both researchers and practitioners. A large number of studies provide evidence in favor of combination methods for forecasting a variety of financial variables, but most of them are implemented on returns forecasting and evaluate their performance based solely on statistical evaluation criteria. In this paper, we combine various volatility forecasts based on different combination schemes and evaluate their performance in forecasting the volatility of the S&P 500 index. We use an exhaustive variety of combination methods to forecast volatility, ranging from simple techniques to time-varying techniques based on the past performance of the single models and regression techniques. We then evaluate the forecasting performance of single and combination volatility forecasts based on both statistical and economic loss functions. The empirical analysis in this paper yields an important conclusion. Although combination forecasts based on more complex methods perform better than the simple combinations and single models, there is no dominant combination technique that outperforms the rest in both statistical and economic terms.  相似文献   

11.
In this paper, we investigate the time series properties of S&P 100 volatility and the forecasting performance of different volatility models. We consider several nonparametric and parametric volatility measures, such as implied, realized and model‐based volatility, and show that these volatility processes exhibit an extremely slow mean‐reverting behavior and possible long memory. For this reason, we explicitly model the near‐unit root behavior of volatility and construct median unbiased forecasts by approximating the finite‐sample forecast distribution using bootstrap methods. Furthermore, we produce prediction intervals for the next‐period implied volatility that provide important information about the uncertainty surrounding the point forecasts. Finally, we apply intercept corrections to forecasts from misspecified models which dramatically improve the accuracy of the volatility forecasts. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
We investigate the realized volatility forecast of stock indices under the structural breaks. We utilize a pure multiple mean break model to identify the possibility of structural breaks in the daily realized volatility series by employing the intraday high‐frequency data of the Shanghai Stock Exchange Composite Index and the five sectoral stock indices in Chinese stock markets for the period 4 January 2000 to 30 December 2011. We then conduct both in‐sample tests and out‐of‐sample forecasts to examine the effects of structural breaks on the performance of ARFIMAX‐FIGARCH models for the realized volatility forecast by utilizing a variety of estimation window sizes designed to accommodate potential structural breaks. The results of the in‐sample tests show that there are multiple breaks in all realized volatility series. The results of the out‐of‐sample point forecasts indicate that the combination forecasts with time‐varying weights across individual forecast models estimated with different estimation windows perform well. In particular, nonlinear combination forecasts with the weights chosen based on a non‐parametric kernel regression and linear combination forecasts with the weights chosen based on the non‐negative restricted least squares and Schwarz information criterion appear to be the most accurate methods in point forecasting for realized volatility under structural breaks. We also conduct an interval forecast of the realized volatility for the combination approaches, and find that the interval forecast for nonlinear combination approaches with the weights chosen according to a non‐parametric kernel regression performs best among the competing models. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Tests of forecast encompassing are used to evaluate one‐step‐ahead forecasts of S&P Composite index returns and volatility. It is found that forecasts over the 1990s made from models that include macroeconomic variables tend to be encompassed by those made from a benchmark model which does not include macroeconomic variables. However, macroeconomic variables are found to add significant information to forecasts of returns and volatility over the 1970s. Often in empirical research on forecasting stock index returns and volatility, in‐sample information criteria are used to rank potential forecasting models. Here, none of the forecasting models for the 1970s that include macroeconomic variables are, on the basis of information criteria, preferred to the relevant benchmark specification. Thus, had investors used information criteria to choose between the models used for forecasting over the 1970s considered in this paper, the predictability that tests of encompassing reveal would not have been exploited. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
In this study, we explore the effect of cojumps within the agricultural futures market, and cojumps between the agricultural futures market and the stock market, on stock volatility forecasting. Also, we take into account large and small components of cojumps. We have several noteworthy findings. First, large jumps may lead to more substantial fluctuations and are more powerful than small jumps. The effect of cojumps and their decompositions on future volatility are mixed. Second, a model including large and small cojumps between the agricultural futures market and the stock market can achieve a higher forecasting accuracy, implying that large and small cojumps contain more useful predictive information than cojumps themselves. Third, our conclusions are robust based on various robustness tests such as the realized kernel, expanding forecasts, different forecasting windows, different jump tests, and different threshold values.  相似文献   

15.
In this paper we compare several multi‐period volatility forecasting models, specifically from MIDAS and HAR families. We perform our comparisons in terms of out‐of‐sample volatility forecasting accuracy. We also consider combinations of the models' forecasts. Using intra‐daily returns of the BOVESPA index, we calculate volatility measures such as realized variance, realized power variation and realized bipower variation to be used as regressors in both models. Further, we use a nonparametric procedure for separately measuring the continuous sample path variation and the discontinuous jump part of the quadratic variation process. Thus MIDAS and HAR specifications with the continuous sample path and jump variability measures as separate regressors are estimated. Our results in terms of mean squared error suggest that regressors involving volatility measures which are robust to jumps (i.e. realized bipower variation and realized power variation) are better at forecasting future volatility. However, we find that, in general, the forecasts based on these regressors are not statistically different from those based on realized variance (the benchmark regressor). Moreover, we find that, in general, the relative forecasting performances of the three approaches (i.e. MIDAS, HAR and forecast combinations) are statistically equivalent. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Standard statistical loss functions, such as mean‐squared error, are commonly used for evaluating financial volatility forecasts. In this paper, an alternative evaluation framework, based on probability scoring rules that can be more closely tailored to a forecast user's decision problem, is proposed. According to the decision at hand, the user specifies the economic events to be forecast, the scoring rule with which to evaluate these probability forecasts, and the subsets of the forecasts of particular interest. The volatility forecasts from a model are then transformed into probability forecasts of the relevant events and evaluated using the selected scoring rule and calibration tests. An empirical example using exchange rate data illustrates the framework and confirms that the choice of loss function directly affects the forecast evaluation results. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

17.
Recent advances in the measurement of beta (systematic return risk) and volatility (total return risk) demonstrate substantial advantages in utilizing high‐frequency return data in a variety of settings. These advances in the measurement of beta and volatility have resulted in improvements in the evaluation of alternative beta and volatility forecasting approaches. In addition, more precise measurement has also led to direct modeling of the time variation of beta and volatility. Both the realized beta and volatility literature have most commonly been modeled with an autoregressive process. In this paper we evaluate constant beta models against autoregressive models of time‐varying realized beta. We find that a constant beta model computed from daily returns over the last 12 months generates the most accurate quarterly forecast of beta and dominates the autoregressive time series forecasts. It also dominates (dramatically) the popular Fama–MacBeth constant beta model, which uses 5 years of monthly returns. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
We transform financial return series into its frequency and time domain via wavelet decomposition to separate short‐run noise from long‐run trends and assess the relevance of each frequency to value‐at‐risk (VaR) forecast. Furthermore, we analyze financial assets in calm and turmoil market times and show that daily 95% VaR forecasts are mainly driven by the volatility that is captured by the first scales comprising the short‐run information, whereas more timescales are needed to adequately forecast 99% VaR. As a result, individual timescales linked via copulas outperform classical parametric VaR approaches that incorporate all information available. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
This paper introduces a methodology for estimating the likelihood of private information usage amongst earnings analysts. This is achieved by assuming that one group of analysts generate forecasts based on the underlying dynamics of earnings, while all other analysts are assumed to issue forecasts based on the prevailing consensus forecast. Given this behavioural dichotomy, we are able to derive (and estimate) a structural econometric model of forecast behaviour, which has implications regarding the determinants of analysts' private information endowments and forecast accuracy over the forecast horizon. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
This paper addresses several questions surrounding volatility forecasting and its use in the estimation of optimal hedging ratios. Specifically: Are there economic gains by nesting time‐series econometric models (GARCH) and dynamic programming models (therefore forecasting volatility several periods out) in the estimation of hedging ratios whilst accounting for volatility in the futures bid–ask spread? Are the forecasted hedging ratios (and wealth generated) from the nested bid–ask model statistically and economically different than standard approaches? Are there times when a trader following a basic model that does not forecast outperforms a trader using the nested bid–ask model? On all counts the results are encouraging—a trader that accounts for the bid–ask spread and forecasts volatility several periods in the nested model will incur lower transactions costs and gain significantly when the market suddenly and abruptly turns. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号