首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文将证明牛顿—莱布尼兹公式对于 schwarz 导数亦成立。设函数 f(x)定义在[a,b]上,若对于 x∈(a、b)(?)(f(x+h)-f(x-h))/(2h)存在,则该极限值为 f(x)在点 x 的 schwarz 导数。记作 f~s(x)引理1 设 f(x)是[a,b]上的连续函数,f~s(x)在(a、b)上存在,若 f(b)>(<)f(a),则存在点,c∈(a,b),使得:f~s(c)≥0(≤0)引理2 设 f(x)在[a,b]上连续,f~s(x)在(a,b)上存在,f(a)=f(b)=0,则存在点 x_1,a相似文献   

2.
<正> Sard定理右f(x)d[a,b]上连续可微,则集合{f(x):f'(x)=0}的Lcbcsgnc测度为零。为证明此定理,我们先证一个引理: 引理若f(x)在[a,b]上连续可微,则对任开集A[a,b],有{f(x):x∈A}  相似文献   

3.
1 函数列一致收敛性定理定理1 若函数列f_n(x)在[a,b]上同等连续,且对于任一x∈[a,b],有f_n(x)→f(x)(n→∞),则f_n(x)在[a,b]一致收敛于f(x)。  相似文献   

4.
官兴隆先生用两个引理给出了拉格朗日中值定理一个新证明,证明采用了逼近的方法,很有特色。本文给引理一一个新的证明,并得出一个推论,仍沿用逼近的方法,给 Caucny 定理一个新证明。Caucny 定理若 i)函数 f(x)与 g(x)在[a,b]上连续;ii)f(x)与 g(x)在(a,b)内可导;iii)g(x)≠0;iv)f(a)≠g(b)则在(a,b)内至少存在一点ξ,使  相似文献   

5.
<正> 在微积分中,为解决含参量积分的求导与积分顺序可交换的问题,教科书上多采用下述定理1与定理2。 定理1 若函数f(x,y)与f_y(x,y)在R[a,b;c,d]上连续,则函数φ(y)=integral from n=a to b(f(x,y)dx)在[c,d]上可导,且 φ′(y)=integral from n=a to b(f_y(x,y)dx) (1)  相似文献   

6.
广义积分收敛的必要条件具体地说为:若函数f(x) 在[a,b]上黎曼可积,则f(x) 在[a,b]上有界且几乎处处连续,而当f(x) 的无限广义积分收敛时,则f(x) 在其广义积分收敛的区域内几乎处处连续但不一定有界.若无穷级数收敛,则其一般项必收敛于0 ,而当 f(x) 的无限广义积分收敛时,f(x) 却不一定收敛于0(当x趋于无穷大时),要使 f(x) 收敛于0(x→∞) ,还需附加一定的条件.  相似文献   

7.
广义积分收敛的必要条件具体地说为:若函数f(x)在[a,b]上黎曼可积,则f(x)在[a,b]上有界且几乎处处连续,而当f(x)的无限广义积分收敛时,则f(x)在其广义积分收敛的区域内几乎处处连续但不一定有界。若无穷级数收敛,则其一般项必收敛于0,而当f(x)的无限广义积分收敛时,f(x)却不一定收敛于0(当x趋于无穷大时),要使f(x)收敛于0(x→∞),还需附加一定的条件。  相似文献   

8.
函数f(x)在无穷区间内一致连续的一个充分条件   总被引:2,自引:0,他引:2  
定义设f(x)为(a,+∞)内的连续函数,若lim[f(x)-(px+q)]=0(p,q为常数)(1)则称f(x)在(a,+∞)内有渐近线y=px+q. 引理1 若函数f(x)在(a,+∞)内有渐近线y=px+q,且lim f(x)存在,则f(x)在(a,+∞)内一致连续。证明(?)ε>0,由于f(x)在(a,+∞)内有渐近线y=px+q,所以lim[f(x)-(px+q)]=0,于是(?)N>max{0,a},当x>N时有  相似文献   

9.
关于“中间点”的渐近性的一个注记   总被引:2,自引:0,他引:2  
第一积分中值定理设f(x)在[a,b)上连续,g(x)在[a,b)上可积且不变号,则存在ξ∈(a,b)使得(1)文[1]讨论了(1)中的“中闻点”ξ当b→a~+时的渐近性,即下述下理1.定理1 若f(x)与g(x)在[a,b]上连续,且g(x)在(a,b)上不变号,f+(a)(f+(a)表示f在a点的右导数,下同)存在且不等于零,g(a)≠0,则对于(1)中的ξ有  相似文献   

10.
利用函数f(x)在积分区间[a,b]端点的函数值及各阶导数值,对函数f(x)在[a,b]上的定积分进行估计,进而得到若干积分不等式.主要结果如下:若函数f(x)是[a,b]上n+1次可微函数,且|f(n+1)(x)|≤M(M>0),则|∫baf(x)dx-x∑k=0(b-a)k+1/2k+1(k+1)![f(k)(a)+(-1)kf(b)]|≤1/2n+1(n+2)!M(b-a)n+2  相似文献   

11.
本文用反证法证明Cauchy微分中值定理。Rolle、Lagrange定理是其直接推论。定理设f,g在[a,b]上连续,在(a,b)内可微,则存在c∈(a,b),使得 f′(c)[φ(b)-φ(a)]=φ′(c)[f(b)-f(a)]。证明设对任意x∈(a,b) f′(x)[φ(b)-φ(a)]-φ′(x)[f(b)-f(a)]≠0,则 d/(dx){f(x)[φ(b)-φ(a)]-φ(x)[f(b)-f(a)]}≠0,记 F(x)=f(x)[φ(b)-φ(a)]-φ(x)[f(b)-f(a)],则F在[a,b]上连续,在(a,b)内可微且F′≠0。故由Darboux知,对所有x∈(a,b)F′>0或  相似文献   

12.
设{L_n}是从 C[a,b]到 C[c,d]的一列算子,[c,d][a,b],如果存在一个函数列{φ_n(x)}在[c,d]上一致趋于0,在(c,d)上为正,满足以下两条:(1)存在函数类 T(L_n)使(φ_n(x))~(-1)[f(x)-L_n(f,x)]=0,x∈(c,d),成立,当且仅当 f∈T(L_n).(2)存在函数 f_n∈C[a,b],f_0∈T(L_n),使  相似文献   

13.
广义积分收敛的必要条件具体地说为:若函数f(x)在[a,b]上黎曼可积,则f(x)在[a,b]上有界且几乎处处连续,而当f(x)的无限广义积分收敛时,则f(x)在其广义积分收敛的区域内几乎处处连续但不一定有界。若无穷级数收敛,则其一般项必收敛于0,而当f(x)的无限广义积分收敛时,f(x)却不一定收敛于0(当x趋于无穷大时),要使f(x)收敛于0(x→∞),还需附加一定的条件。  相似文献   

14.
文〔1〕将牛顿——莱布尼兹公式进行了推广,本文进一步推广为:定理设函数f(x)在〔a,b〕上连续,并且 f_+′(x)与 f_-′(x)在(a,b)内存在,如果存在 p、q≥0,满足 p+q=1,使得函数 pf_+′(x)+qf_--′(x)在〔a,b〕上黎曼可积,则integral from b to a (pf_+′(x)+qf_--′(x))dx=f(b)-f(a).为证此结果先介绍两个有用的引理.引理1 设 f(x)在〔a,b〕上连续,并且 f_+′(x)与 f_--′(x)在(a,b)内存在,则存在ξ∈(a,b)  相似文献   

15.
最近B.Jacobson证得 定理J 若f(t)在[a,x]上连续,在a点可导且f'(a)≠0,又c适合 integral from n=c to x(f(t)dt=f(c)(x-a),a相似文献   

16.
<正>在定积分计算中,有如下性质.性质i:若f(x)为[-a,a]上的连续奇函数,则integral from n=-a to a f(x)dx=0性质ii:若f(x)为[-a,a]上的连续偶函数,则integral from n=-a to a f(x)dx=2 integral from n=0 to a f(x)dx本文将上述两个性质推广到如下情形、得到一个更一般的性质.性质1:若f(x)为闭区间[a,b]上的连续函数  相似文献   

17.
本文主要系构造一辅助函数,从而将哥西中值定理推广到n个函数。茲先讨论三个函数的情形。定理1 设函数f(x),φ(x),ψ(x)在闭区间[a,b]上连续,在开区间[a,b]上可微,则一定有这样—点c(a相似文献   

18.
讨论有界函数是否在有限闭区间上(常义)黎曼可积时,文献[1]的可积准则为“,即文献[2]的可积准则为某个分割T,使得由于所用可积准则不同,在证明下述两个基本定理:定理1若函数f(x)在闭区间[a,b]有界,且有有限个间断点,则函数f(x)在[a,b]可积.定理2若函数f(x)在区间[a,c]与[c,b]可积,则函数f(x)在[a,b]也可积.时所采用的证明方法也就不同,而文献[2]的证明显得简单明了.本文不同于文献[2]的方法,将介绍一个振幅和不等式在证明函数黎曼可积方面的应用(下文所用符号的含义及可积准则与[1]相同).一个振幅和不等式…  相似文献   

19.
如果函数y=f(x),在[a,b] 内连续,在区间(a,b)内可微,则有 f(b)-f(a)/b-a=f′(ξ) 其中ξ∈(a,b),b>a这时设y=f′(ξ)是[a,b]上的有界函数,则有如下结论:(1)若f′(ξ)≥m f(b)-f(a)≥(b-a)m(2)若f′(ξ)≤m f(b)-f(a)≤(b-a)m(3)若n≤f(ξ)≤m n(b-a)≤f(b)-f(a)≤m(b-a)  相似文献   

20.
本文应用有限复盖定理,对二元函数可积的充分性给出了两个新结论.定理1 设f(x,y)是定义在有界闭区域D={(x,y)|a≤x≤b,c≤y≤d}上的有界函数.若f(x,y)在D上对y关于x一致连续,对x只有第一类间断点,则f(x,y)在D上可积.定理2 设f(x,y)是定义在有界闭区域D={(x,y)|a≤x≤b,c≤y≤d}上的有界函数.f(x,y)在D上有无穷多个间断点,但对(?)(x_0,y_0)∈D,极限(?) f(x,y)都存在,则f(x,y)在D上可积.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号