首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
CREB regulates hepatic gluconeogenesis through the coactivator PGC-1   总被引:49,自引:0,他引:49  
When mammals fast, glucose homeostasis is achieved by triggering expression of gluconeogenic genes in response to glucagon and glucocorticoids. The pathways act synergistically to induce gluconeogenesis (glucose synthesis), although the underlying mechanism has not been determined. Here we show that mice carrying a targeted disruption of the cyclic AMP (cAMP) response element binding (CREB) protein gene, or overexpressing a dominant-negative CREB inhibitor, exhibit fasting hypoglycaemia [corrected] and reduced expression of gluconeogenic enzymes. CREB was found to induce expression of the gluconeogenic programme through the nuclear receptor coactivator PGC-1, which is shown here to be a direct target for CREB regulation in vivo. Overexpression of PGC-1 in CREB-deficient mice restored glucose homeostasis and rescued expression of gluconeogenic genes. In transient assays, PGC-1 potentiated glucocorticoid induction of the gene for phosphoenolpyruvate carboxykinase (PEPCK), the rate-limiting enzyme in gluconeogenesis. PGC-1 promotes cooperativity between cyclic AMP and glucocorticoid signalling pathways during hepatic gluconeogenesis. Fasting hyperglycaemia is strongly correlated with type II diabetes, so our results suggest that the activation of PGC-1 by CREB in liver contributes importantly to the pathogenesis of this disease.  相似文献   

2.
3.
Functional interaction of phytochrome B and cryptochrome 2   总被引:38,自引:0,他引:38  
Más P  Devlin PF  Panda S  Kay SA 《Nature》2000,408(6809):207-211
Light is a crucial environmental signal that controls many photomorphogenic and circadian responses in plants. Perception and transduction of light is achieved by at least two principal groups of photoreceptors, phytochromes and cryptochromes. Phytochromes are red/far-red light-absorbing receptors encoded by a gene family of five members (phyA to phyE) in Arabidopsis. Cryptochrome 1 (cry1), cryptochrome 2 (cry2) and phototropin are the blue/ultraviolet-A light receptors that have been characterized in Arabidopsis. Previous studies showed that modulation of many physiological responses in plants is achieved by genetic interactions between different photoreceptors; however, little is known about the nature of these interactions and their roles in the signal transduction pathway. Here we show the genetic interaction that occurs between the Arabidopsis photoreceptors phyB and cry2 in the control of flowering time, hypocotyl elongation and circadian period by the clock. PhyB interacts directly with cry2 as observed in co-immunoprecipitation experiments with transgenic Arabidopsis plants overexpressing cry2. Using fluorescent resonance energy transfer microscopy, we show that phyB and cry2 interact in nuclear speckles that are formed in a light-dependent fashion.  相似文献   

4.
5.
A central question arising from the model of eukaryotic gene regulation by steroid hormone receptors is whether or not proteins represent pre-existing gene regulatory proteins that are activated on exposure to the extracellular signal. It has been generally believed that the ligand-binding of steroid hormone receptors triggers an allosteric change in receptor structure, manifested by an increased affinity of the receptor for DNA in vitro and nuclear target elements in vivo, as monitored by nuclear translocation. But this model has been challenged by recent reports indicating that glucocorticoid and progesterone receptors bind specifically in vitro to target DNA sequences even in the absence of hormone. On the other hand, it appears that the hormone induces protection in vivo of the glucocorticoid response element of the tyrosine amino transferase gene. Here we show that under conditions permitting minimal in vitro manipulation, the steroid-free glucocorticoid receptor in crude cytosol associates with the hsp90 heat shock protein (relative molecular mass Mr approximately equal to 90,000) to form a large 300K complex, rather than the 94K liganded receptor monomer. More importantly, we have developed an assay to demonstrate the requirement of hormone to dissociate the 300K complex by heat treatment. Specific DNA-binding activity of the receptor becomes apparent in this process, showing that DNA binding occurs but is inhibited in the large heteromeric complex. We propose a model in which receptor function is repressed by association of the receptor with hsp90. Dissociation of this complex is induced by the binding of steroid and is apparently an irreversible process.  相似文献   

6.
7.
Retinoic acid regulates growth hormone gene expression   总被引:16,自引:0,他引:16  
G Bedo  P Santisteban  A Aranda 《Nature》1989,339(6221):231-234
  相似文献   

8.
9.
S Green  P Chambon 《Nature》1987,325(6099):75-78
  相似文献   

10.
Synchronizing rhythms of behaviour and metabolic processes is important for cardiovascular health and preventing metabolic diseases. The nuclear receptors REV-ERB-α and REV-ERB-β have an integral role in regulating the expression of core clock proteins driving rhythms in activity and metabolism. Here we describe the identification of potent synthetic REV-ERB agonists with in vivo activity. Administration of synthetic REV-ERB ligands alters circadian behaviour and the circadian pattern of core clock gene expression in the hypothalami of mice. The circadian pattern of expression of an array of metabolic genes in the liver, skeletal muscle and adipose tissue was also altered, resulting in increased energy expenditure. Treatment of diet-induced obese mice with a REV-ERB agonist decreased obesity by reducing fat mass and markedly improving dyslipidaemia and hyperglycaemia. These results indicate that synthetic REV-ERB ligands that pharmacologically target the circadian rhythm may be beneficial in the treatment of sleep disorders as well as metabolic diseases.  相似文献   

11.
Liu C  Li S  Liu T  Borjigin J  Lin JD 《Nature》2007,447(7143):477-481
  相似文献   

12.
M C Pepin  F Pothier  N Barden 《Nature》1992,355(6362):725-728
Glucocorticoids, in conjunction with their cognate receptors, exert negative-feedback effects on the hypothalamus-pituitary-adrenal axis, suppressing adrenal steroid secretions. Two types of corticosteroid receptor, distinguishable by their ability to bind corticosterone, have been identified as classical mineralocorticoid (type I) and glucocorticoid (type II) receptors by cloning their complementary DNAs. The type I receptor controls the basal circadian rhythm of corticosteroid secretion. Both receptor types are involved in negative feedback, but the type II receptor may be more important for terminating the stress response as it is the only one to be increased in animals rendered more sensitive to corticosteroid negative-feedback effects. Here we create a transgenic mouse with impaired corticosteroid-receptor function by partially knocking out gene expression with type II glucocorticoid receptor antisense RNA. We use this animal to study the glucocorticoid feedback effect on the hypothalamus-pituitary-adrenal axis.  相似文献   

13.
14.
15.
Flowering is often triggered by exposing plants to appropriate day lengths. This response requires an endogenous timer called the circadian clock to measure the duration of the day or night. This timer also controls daily rhythms in gene expression and behavioural patterns such as leaf movements. Several Arabidopsis mutations affect both circadian processes and flowering time; but how the effect of these mutations on the circadian clock is related to their influence on flowering remains unknown. Here we show that expression of CONSTANS (CO), a gene that accelerates flowering in response to long days, is modulated by the circadian clock and day length. Expression of a CO target gene, called FLOWERING LOCUS T (FT), is restricted to a similar time of day as expression of CO. Three mutations that affect circadian rhythms and flowering time alter CO and FT expression in ways that are consistent with their effects on flowering. In addition, the late flowering phenotype of such mutants is corrected by overexpressing CO. Thus, CO acts between the circadian clock and the control of flowering, suggesting mechanisms by which day length regulates flowering time.  相似文献   

16.
17.
B Zheng  D W Larkin  U Albrecht  Z S Sun  M Sage  G Eichele  C C Lee  A Bradley 《Nature》1999,400(6740):169-173
Circadian rhythms are driven by endogenous biological clocks that regulate many biochemical, physiological and behavioural processes in a wide range of life forms. In mammals, there is a master circadian clock in the suprachiasmatic nucleus of the anterior hypothalamus. Three putative mammalian homologues (mPer1, mPer2 and mPer3) of the Drosophila circadian clock gene period (per) have been identified. The mPer genes share a conserved PAS domain (a dimerization domain found in Per, Arnt and Sim) and show a circadian expression pattern in the suprachiasmatic nucleus. To assess the in vivo function of mPer2, we generated and characterized a deletion mutation in the PAS domain of the mouse mPer2 gene. Here we show that mice homozygous for this mutation display a shorter circadian period followed by a loss of circadian rhythmicity in constant darkness. The mutation also diminishes the oscillating expression of both mPer1 and mPer2 in the suprachiasmatic nucleus, indicating that mPer2 may regulate mPer1 in vivo. These data provide evidence that an mPer gene functions in the circadian clock, and define mPer2 as a component of the mammalian circadian oscillator.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号