首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
p53修饰及其相互作用的研究进展   总被引:1,自引:0,他引:1  
黄洁  刘向宇  朱卫国 《科学通报》2009,54(18):2746-2758
p53是一个重要的抑癌分子, 在抑制肿瘤发生发展过程中起关键作用. 正常生理状况下, p53水平很低, 细胞受到外界刺激后, p53水平升高, 稳定性增强, 继而参与细胞周期阻滞、细胞衰老、DNA修复或细胞凋亡等重要的生命过程. p53功能的精确调控至关重要, 涉及一系列翻译后修饰(泛素化、乙酰化、磷酸化、甲基化、泛素样蛋白质修饰等等), 这些作用互相协作、相互影响, 从而精密调节p53的活性. 本文探讨p53的各种修饰作用, 并分析其各种修饰与肿瘤发生的相互关系, 为肿瘤的治疗提供一些参考价值.  相似文献   

2.
蛋白质-蛋白质相互作用是蛋白质发挥功能的主要机制之一,在DNA损伤修复、自噬和代谢等过程中都扮演着非常重要的角色,蛋白相互作用异常便会导致肿瘤等疾病的发生.在蛋白质的赖氨酸、丝氨酸和苏氨酸等氨基酸残基上,可发生甲基化、乙酰化、磷酸化和泛素化等200多种翻译后修饰,这些修饰通常能改变蛋白质的电性、疏水性和空间结构等属性,为与之结合的蛋白提供结合的锚定或产生位阻效应,像一把开关在时空上精确调控蛋白质-蛋白质相互作用的发生以及动态变化.结构研究表明,蛋白质之间的相互作用通常由临近的几个氨基酸残基直接结合,替换该区域的氨基酸残基,通常能破坏结合,使其失去部分功能或酶活性,可以针对性地开发和设计抑制剂或激活剂,用于肿瘤等疾病的治疗.本文简要介绍了蛋白质翻译后修饰在蛋白质-蛋白质相互作用中的调控作用,以及发挥的重要生理功能.  相似文献   

3.
王启军  赵世民 《科学通报》2010,55(21):2063-2067
能量代谢一直是最为热门的研究领域之一. 对乙酰化调控代谢的机理的研究发现, 代谢酶类赖氨酸残基的乙酰化修饰与很早就发现的转录调控、反馈抑制、变构调节及磷酸化修饰一样, 是一种广泛存在于原核和真核生物体内的保守代谢调控机制, 即乙酰化修饰不仅可以抑制/激活代谢酶的催化活力、影响蛋白的稳定性, 还可能协调代谢途径中各个代谢酶类的活性, 并在协调不同通路的代谢流分布中发挥更为广泛的生理功能, 进而在细胞整体水平上调控代谢. 最近还发现一些中间代谢物在细胞信号中起重要作用, 不平衡地积累2-羟基戊二酸或减少α-酮戊二酸会对加双氧酶蛋白家族产生重要的影响, 改变包括HIF途径在内的肿瘤相关信号通路, 并可能引起组蛋白甲基化修饰的改变. 由于代谢与人类疾病紧密相关, 这些新的发现在科学界引起了人们广泛的兴趣.  相似文献   

4.
正表观遗传学是细胞调控基因表达的众多方式之一,它研究基因在不改变其遗传密码或DNA序列的情况下开启或关闭的机制。表观遗传学帮助科学家更好地理解复杂多样的生物过程,如细胞分化、基因组印记和X染色体失活,并通过两个机制过程进行操作:组蛋白修饰(如甲基化、乙酰化、泛素化和磷酸化)以及胞嘧啶碱基对的直接甲基化。作为表观遗传学评估和干预的两种新方法,APOBEC偶联表观遗传测序(ACE-seq)和CRISPR具有显著增强表观遗传学研究及其临床应用的潜力。  相似文献   

5.
磷酸化是一种常见的蛋白质翻译后修饰形式,调控蛋白质的活性、稳定性、细胞内定位和蛋白质互作等功能.在真核细胞中,丝氨酸、苏氨酸和酪氨酸是最常见的磷酸化位点.在流感病毒复制的生命周期中,病毒蛋白可被宿主激酶磷酸化修饰,并调节其核质穿梭、信号转导等功能,从而调控病毒的生长、复制和致病力.本文就近年来关于流感病毒内部核蛋白、基质蛋白1、非结构蛋白1的磷酸化修饰位点和其生物学功能进行综述,为深入了解流感病毒复制周期及抗病毒药物研发提供理论基础.  相似文献   

6.
预测和分析血吸虫含有EF-hand结构域的表膜蛋白的功能   总被引:1,自引:0,他引:1  
于复东  康斌  李园园  李亦学 《科学通报》2007,52(13):1529-1535
血吸虫病仍然是严重危害人类健康的重要寄生虫疾病之一. 在血吸虫中发现一类特殊的表膜蛋白, 它们含有EF-hand结构域, 但是对它们功能的了解除了可以作为抗原之外几乎一无所知. 蛋白-蛋白相互作用、位点特异性变异和糖基化位点修饰等in silico分析的结果表明, 这类表膜蛋白不仅可以与具有免疫调节功能的宿主蛋白进行相互作用来帮助血吸虫主动调节宿主的免疫反应, 还可以通过位点特异性变异、糖基化修饰自身那些可以被宿主免疫攻击所识别的位点, 以帮助血吸虫被动调节宿主免疫攻击. 此外, 对表膜蛋白C端区域的分析表明, 这些蛋白还可以协助血吸虫抑制宿主多核细胞的细胞趋化和宿主的IgG4免疫反应来调节和逃避宿主的免疫攻击. 总之, 分析结果暗示, 这些表膜蛋白可以协助血吸虫在宿主-寄生虫相互作用过程中调节和逃避宿主的免疫攻击, 起到自我保护的作用.  相似文献   

7.
蛋白激酶研究进展   总被引:3,自引:1,他引:2  
乐志培 《自然杂志》1999,21(1):24-33
蛋白激酶的研究不仅有理论意义,而且有重要的现实意义.因为蛋白质磷酸化和去磷酸化(即“可逆蛋白质磷酸化”)是所有具有重要生物学功能的磷蛋白(千种以上)活性、性质改变的“开关”,因此,可以通过用人工方法对功能蛋白(酶)磷酸化和去磷酸化的化学修饰和去修饰来调节细胞代谢、生长、分化、增殖,这一方法在农业、医药、食品和化学工业等方面有广泛的应用价值.值得指出的是,中科院院士、清华大学教授赵玉芬已经合成了几十种具有催化功能的磷酰氨基酸,并提出了“微型酶”学说.众所周知,氨基酸本身化学性质十分稳定,无催化活性,当它与磷酸作用合成磷酰氨基酸时变得极其活泼,具有催化剂的功能,为模拟酶的研究和合成开辟了一个崭新的途径和领域.可以设想,以氨基酸为基本组成单位的生物大分子蛋白质或多肽通过磷酸化和去磷酸化的修饰和去修饰必将使蛋白质或多肽具有许多新的化学性质和功能,为模拟酶、酶工程、蛋白质化学工程的研究和应用开辟新的途径,具有广泛的发展前景.  相似文献   

8.
《科学通报》2007,52(16):1977-1977
荷质协同传递是一类广泛存在的电荷迁移现象.特别是在复杂的生物环境中,表现出了许多迷人的协同迁移特征.它不仅参与一切正常的生理代谢过程,而且还与蛋白质、DNA等生物大分子的损伤以及病变机制密切相关,并且敏感地依赖于各类环境因素.因此阐明各类环境下质子电子迁移的协同性对认识相关的生命过程机制具有重要意义.目前,利用各种手段人们已经探明了诸多荷质协同转移特征,并被用于解释蛋白质氧化损伤、DNA电荷传导、转录与复制等过程.这类荷质协同转移原理对仿生功能材料及纳米分子器件的设计也具有很好的应用价值.另外,在各类有机体内,金属离子是很重要的一类组分,并且在调节活性中心的生物功能方面起着至关重要的作用.尤其,最近的研究发现金属或它们的配合物能够有效地调节电子转移的途径和速率.另一  相似文献   

9.
植物F-box蛋白质及其研究进展   总被引:5,自引:0,他引:5  
王洪云  黄剑  赖钊  薛勇彪 《科学通报》2002,47(12):891-895
在真核生物中,由泛素介导的蛋白降解途径与细胞的分裂、发育、代谢、免疫等许多复杂的生理过程密切相关。F-box蛋白质通过参与SCF复合体的形成介导了泛素化蛋白底物的特异性识别,在其降解过程中发挥关键作用。目前,从拟南芥和金鱼草中发现了多个已知功能的F-box蛋白质,它们分别参与了生长素信号转导、花器官发育、开花和叶片衰老等多种生物学过程。拟南芥全基因组序列分析表明,它可能编码1000多个F-box蛋白质,约占全部预测蛋白质的5%。这些结果说明,F-box蛋白质介导的泛素化蛋白质降解途径可能是植物基因表达调控的一个非常重要的机制。本文主要介绍了SCF复合体和已知植物F-box蛋白质及其生物学功能。  相似文献   

10.
段洪超 《自然杂志》2017,39(1):19-24
中心法则是现代生物学的理论基础之一。绝大部分生命体将遗传信息储存在DNA中,遗传信息通过转录流向RNA,再通过翻译流向蛋白质。随着研究的深入,人们逐渐认识到RNA不只充当了遗传信息由DNA流向蛋白质的桥梁,RNA层面的转录后调控过程还对基因表达进行了更为精准高效的调节,RNA在中心法则中的核心地位越来越突出。在转录后调控过程中,RNA修饰起到了至关重要的作用。对RNA修饰及其修饰酶、脱修饰酶和结合蛋白的研究已成为一个引人瞩目的新方向——RNA表观遗传学/表观转录组学。N~6-甲基腺嘌呤(m6A)是目前研究最为深入的RNA修饰。本文着重介绍m6A修饰对干细胞的分化过程的调控,对病毒侵染宿主和自我复制过程的影响,以及m6A在果蝇性别决定中起到的关键作用。RNA修饰对于其他各种生命过程的影响也在不断地被揭示出来,预示着RNA修饰的研究必将深刻地影响医疗、制药,乃至农业的发展。  相似文献   

11.
NF-κB激活的调节机理   总被引:10,自引:0,他引:10  
陈丹英  翟中和  舒红兵 《科学通报》2003,48(18):1893-1911
NF-κB是广泛存在于各种类型细胞中的一种转录因子. 它调节大量与细胞应急反应, 如免疫应答、炎症反应和细胞抗凋亡作用相关的基因的转录. NF-κB活化的失调与许多人类病症如类风湿性关节炎、癌症等直接相关, 因此NF-κB激活的调节机制一直是细胞生物学及免疫学领域的研究热点. NF-κB通常与抑制因子IκBs相结合, 以非活性形式存在于细胞质中, 当细胞受到上游刺激因子, 如肿瘤坏死因子、白介素-1、细菌脂多糖等的作用时, IκB在激酶复合物IKK的作用下被磷酸化, 进而被泛素连接酶复合物E3RSIκB/β-TrCP识别并泛素化, 然后被26S蛋白酶体识别并迅速降解. IκB的降解使NF-κB的核定位序列暴露出来, 进入核内起始转录. IKK的活化是NF-κB激活信号通路中的关键步骤, 同时NF-κB的磷酸化、NF-κB前体的降解等也在其中发挥重要作用. 本文重点介绍NF-κB激活调节的经典途径及最新研究进展.  相似文献   

12.
叶立  何园  叶浩  刘雪平  杨琳琳  曹志伟  唐凯临 《科学通报》2012,(12):1019-1027,1081,1083
研究候选药物治疗疾病的作用机制是药物研发过程中的一个重要步骤.目前,运用系统生物学方法对蛋白、药物和疾病相互关联网络的分析加深了对药物治疗疾病机理的理解.然而,针对这些关联网络的分析大都是从基因/蛋白的角度直接关联到疾病层面.考虑到蛋白通常通过参与生理通路实现其自身的生物功能,所以本研究提出了以生物通路关联网络的分析方法,以生物通路为研究视角来研究药物治疗疾病的机理.许多研究表明,丹参主要活性成分丹酚酸B对心血管疾病有良好的疗效.本文在运用药物-蛋白关联网络分析方法的基础上,尝试结合生物通路关联网络去分析丹酚酸B治疗心血管疾病的机理.利用分子对接方法计算得到丹酚酸B的作用靶点,同时通过文献挖掘收集实验验证的丹酚酸B治疗心血管疾病的调控蛋白及目前治疗心血管疾病的西药及靶点数据.利用药物-蛋白关联网络分析发现,丹酚酸B能够通过作用肾素-血管紧张素-醛固酮系统中血管紧张素转化酶和肾素,从而舒张血管,最终调节心血管疾病.通过生物通路关联网络分析发现,丹酚酸B可能通过作用凋亡生理过程、免疫/炎症生理过程、离子迁移生理过程和基础代谢生理过程来调节心血管疾病,并且倾向于调节免疫生理过程.因此,基于通路关联网络的分析方法能够为分析药物的治病机理提供新的视角.  相似文献   

13.
通过对纳米结构进行表面生物和化学修饰,能够赋予其崭新的界面性质.本文概述了纳米颗粒表面共价修饰和非共价修饰多肽和蛋白质的常用方法,对比了两种修饰方法的优缺点以及构筑纳米生物结构存在的问题;并介绍了多肽和蛋白质界面修饰在改善纳米颗粒生物稳定性、生物分布和靶向性方面的研究工作;在此基础上介绍了纳米生物结构基于抗原-抗体特异性识别在生物检测领域的应用;此外,简单介绍了纳米生物结构在应用过程中所面临的挑战.希望本综述能够有助于科技工作者了解纳米生物结构的构筑方法及其应用方面的进展和挑战,为多肽和蛋白质修饰纳米结构的设计合成提供一些启发和思路.  相似文献   

14.
生物钟是生物所具有的一种独特的生理功能,生物个体可借此自动预测时间,并相应地调节各项生理活动的节律.从低等的蓝藻直到包括人在内的哺乳动物.地球上的绝大多数生物体内都存在生物钟,各种生物可通过生物钟来调节体内的生化反应,进而对生理活动进行调节,实现与昼夜节律性变化环境因子的同步化.  相似文献   

15.
李林 《世界科学》1996,(3):29-30
蛋白质可逆磷酸化作用的结构基础李林(中国科学院上海生物化学研究所)蛋白质可逆磷酸化几乎调节着生命活动的每一过程。细胞的生长和分化,具体到基因复制转录调控、蛋白质合成调控和代谢调控,分子识别和信号传递,肌肉收缩,肿瘤发生以及包括学习记忆在内的神经活动等...  相似文献   

16.
《科学通报》2021,66(15):1821-1834
DNA甲基化是一种常见的表观遗传修饰,与基因的表达调控、转座子的沉默及异染色质的形成等紧密相关. DNA从头甲基化是指在新位点建立甲基化修饰的过程.植物中存在多个DNA从头甲基化通路,主要分为RNA介导的DNA甲基化(RNA-directed DNA methylation, Rd DM)及CMTs(CHROMOMETHYLASEs)参与的从头甲基化.Rd DM通路在非编码RNA的介导下靶向建立甲基化修饰,可调控植物多类生长发育过程.伴随着研究的深入,多条非经典的Rd DM通路得以发现,这些通路在转座子的识别和沉默方面有着重要作用.此外,非模式植物中的研究还对CMT3参与从头甲基化的机理进行了探索.基于DNA从头甲基化机制,最近的研究开发了多种靶向DNA甲基化操控工具,这些工具将推进对DNA甲基化功能的认识,并有望进一步用于遗传操控进行作物改良.本文综述了植物DNA从头甲基化机制的最新研究进展,并针对该机制的应用进行了讨论.  相似文献   

17.
植物体内草酸钙的生物矿化   总被引:2,自引:0,他引:2  
草酸钙晶体在特化的植物晶异细胞内的形成是一种基本的、重要的生理代谢过程.不同植物草酸钙晶体在形态/结构上存在多样性和种间专一性,它们具有特定的尺寸和形貌,并且成核后晶体的生长和特化细胞的发育间存在显著的协同作用,这表明草酸钙的生物合成不是一种简单的化学结晶过程,而是受遗传和生物大分子的精确调控.被塑造的矿化相在特定的膜包覆空间内经历了各自不同的生物化学途径,最终形成热力学稳定相.草酸钙晶体赋予植物许多不同的功能,主要包括对高容量钙的调节和植物自我保护作用,从而间接地反映出植物在不同生境中进化的印迹.本文介绍了草酸钙晶体在植物体内合成的草酸代谢途径、钙的吸收和累积,主要讨论晶体生长过程的植物调节机制以及体外模拟生物分子对草酸钙结晶动力学过程的调控等,以期揭示植物体内草酸钙的生物矿化机制,并为仿生材料合成和人类病理结石的抑制等提供重要线索.  相似文献   

18.
外源种质导入引发小麦表观遗传变异的MSAP分析   总被引:1,自引:0,他引:1  
通过染色体工程将外源种质向小麦基因组转移的过程中, 可以诱发受体物种基因组结构及基因表达的广泛遗传变异. 本文以3个高代分离的小麦-黑麦姊妹易位系及其农艺亲本为材料, 应用GISH和AFLP技术分析其基因组结构与组成, 发现姊妹系材料基因组组成高度一致; 同其亲本相比较, 除1RS/1BL染色体易位外, 并没有表现出其他明显的基因组结构变异. 进一步的MSAP分析发现, 易位系材料发生全甲基化修饰的比例比小麦亲本(全甲基化, 16.37%; 半甲基化, 25.44%)明显上升(CN12, 20.15%; CN17, 20.91%; CN18, 22.42%), 而半甲基化比例则明显下降(CN12, 21.41%; CN17, 23.43%; CN18, 22.42%). 本研究共检测到29种不同类型的甲基化修饰模式, 其中13种类型(33.74%)的位点表现为超甲基化修饰, 9种类型(22.76%)的位点表现为去甲基化修饰, 而余下7种类型(4.07%)的位点甲基化模式变异未能明确界定. 从中分离了多条存在甲基化位点变异的DNA序列, 鉴定了多种小麦转座子序列、亚端粒重复序列以及单拷贝蛋白质编码序列.  相似文献   

19.
《科学通报》2021,66(20):2529-2541
蛋白质磷酸化信号网络在植物生长发育和抵御外界环境变化过程中起重要调控作用,解析这些复杂的信号通路及其作用机理一直是生物学研究领域的重点和难点.近年来,已经发展多种方法用于分析蛋白磷酸化的动态变化和功能机理.本文总结了研究植物蛋白磷酸化信号网络的不同方法和最新进展:首先概述磷酸化蛋白的富集纯化技术和检测方法,评价每种方法的优缺点;其次重点讨论研究磷酸化蛋白质组学和互作组学的不同质谱方法和这些方法在植物生物学领域的研究进展,并结合案例分析其应用范围.此外,还归纳和探讨这些技术的不同特性以及在蛋白磷酸化研究中的优势,并对这方面的研究热点作了展望,为深入研究蛋白磷酸化修饰在植物生物学中的分子机制提供重要的指导作用.  相似文献   

20.
体细胞核移植牛肺脏中H19和Xist基因的DNA甲基化状态   总被引:2,自引:0,他引:2  
陈洁  李冬杰  刘艳琴  张萃  戴蕴平  李世杰  李宁 《科学通报》2008,53(11):1305-1310
在体细胞核移植中, 体细胞的供体核要经过表观遗传修饰的重编程才能获得发育的全能性, 目前认为不完全的表观重编程是导致克隆效率低的主要原因. DNA甲基化是基因组主要的表观遗传修饰方式, 是调节基因组功能的重要手段. 为了探求核移植过程中DNA甲基化的表观重编程是否充分, 利用亚硫酸氢盐测序法分析了印记基因H19和Xist在出生48 h内死亡的体细胞核移植牛和正常对照牛肺脏中的DNA甲基化状态. 结果发现, 体细胞核移植牛中H19基因甲基化程度较低, 与正常对照组相比差异显著(P < 0.05), 并且 9C3个体有3个CpG (第1, 2, 3位)表现出完全非甲基化; Xist基因甲基化程度在体细胞核移植牛和正常对照牛中都较高, 且没有显著差异.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号