首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 734 毫秒
1.
正压浓相气力输送系统输送特性的实验研究   总被引:2,自引:0,他引:2  
对工业规模的正压浓相气力输送系统,在完全模拟实际工况的条件下,进行了固粒气力输送运行特征和操作参数的试验研究。对输送距离为200m的正压浓相气力输送运行特性作了比较全面的定量描述和分析,试验结果揭示了气力输送的运行效率及其与输送参数的关系;澄清了某些工程中的提法;获得了最佳的运行工况点。所得结论可成为系统运行和新装置设计时主要参数的确定依据。  相似文献   

2.
为了研究炉内喷钙气力输送气固两相流的输送特性,对实际的工业气力输送系统进行1:1实验台改造,首先进行了系统的耗气量与输送量的特性试验;然后进行了系统的固气比与耗气量、输送量和总压的特性试验;最后考察了喷嘴位置对总压、输送量的影响。实验研究表明:炉内喷钙气力输送流动模式以稀相输送为主,表观气速约为10—12ms^-1;输送量和耗气量的特性曲线与总压和固气比的特性曲线,有相似趋势,在开始时线性增加,然后趋势逐步变得平缓;喷嘴位置存在最佳值32mm。研究结果对炉内喷钙气力输送系统的工程设计、运行和理论研究提供依据并具有指导作用。  相似文献   

3.
在自主搭建输送压力可达4.0 MPa的高压密相气力输送实验台上分别进行石油焦和无烟煤的输送实验及不同质量配比的石油焦和无烟煤混合输送实验,揭示在不同的总输送差压下粉体物性及操作参数对流动特性和输送稳定性的影响规律。研究结果表明:在相同的输送条件下,相同粒径的石油焦的输送量远小于无烟煤的输送量,且石油焦的输送稳定性比无烟煤的输送稳定性差;保持相同的输送条件,混合物料的输送量和输送稳定性均优于石油焦的输送量和输送稳定性,但比无烟煤的差;随着混合物中无烟煤质量比例的提高,气力输送的输送量增大,但输送稳定性未得到显著提高。  相似文献   

4.
张鹏  武广萍 《甘肃科技》2013,(21):59-61
介绍了正压浓相双套管气力输灰系统的原理及特点,对在电厂调试期间省煤器输灰系统出现的异常堵管问题进行了判断与处理,并从气源压力、运行工况、灰成分和管道残留物等方面进行了分析.疏通后省煤器管道出口压力最高值从450kPa降至110kPa.因此,建议在设备安装过程中将管道内的杂物清理干净,以防给运行留下隐患.  相似文献   

5.
粉粒料的散装输送,大体上可分为机械输送和气力输送两大类。气力输送是利用气流实现粉粒料的管道输送。若按混合比(每公斤气体所能送走多少公斤的物料量)来分,一般认为在5以下的为稀相气力输送,5以上的为密相气力输送。近年来,随着密相输送技术的新进展,在密相输送中,又按其物料移动速度的高低和混合比的大小,将其分为一般的密相输送和低速(一般速度为5米/秒以下)、高浓度(混合比大于40)  相似文献   

6.
为了获得高压浓相气力输送过程中不同粉体的输送机理及流动特性,对发料罐内的流动特性、不同粉体的输送特性及含水率对流动稳定性的影响规律进行实验研究并进行数值模拟。引用先进的阵列式静电传感器对粉体流动过程的特征参数进行监测。结果如下:采用光纤颗粒浓度探针获得了常压上出料式发送罐内提升管入口附近区域颗粒浓度分布,揭示了提升管入口附近区域气固流动结构的变化规律。在高压超浓相条件下进行了不同含碳原料的气力输送实验研究,获得了褐煤、无烟煤以及石油焦的输送规律,发现了石油焦输送过程中的结壳问题并提出了解决方法;通过褐煤中不同赋存形态的水分进行分类研究,获得了不同褐煤气力输送临界水分含量。对工业规模级竖直上升管压降进行了研究,并对粉煤密相气力输送管路流型及其压力信号特征分析,揭示了粉煤流动稳定性以及流型变化特性。对基于颗粒动理学理论的双流体模型进行了修正,建立了描述常压上出料式发送罐内气固流动的数学模型,获得了提升管入口附近区域颗粒浓度和速度分布规律。基于双流体Euler-Euler方法,将k-ε-kp-εp湍流模型与颗粒动理学理论相结合,对高压超浓相粉体气力输送的气固两相流的全面力学分析,通过对气固两相流的动力学参数的瞬态分布特征的理论分析,对原有数理模型进一步的改进和完善后,利用此模型对高压超浓相输送系统中水平管、弯管和垂直管建立了完善的一体化管道并进行模拟计算。开发了基于阵列式静电传感器的多路相关速度测量系统,实现了颗粒局部平均速度的测量,并将其应用于高压浓相煤粉气力输送的过程监测中,为提高气力输送效率和输送稳定性提供参考依据。  相似文献   

7.
为了研究柱塞式气力输送气固两相流的输送特性,对实际的工业气力输送系统进行1∶1实验台改造,首先进行了粉煤灰在输送管内的流动模式试验;然后进行粉煤灰输送压力、输送质量流量特性试验;最后考察了主进气流量、补气流量、助吹气流量对粉煤灰输送量、固气比的影响.研究表明:柱塞式气力输送流动模式以密相栓柱流为主,其灰栓长度为0.8-2.3m,移动速度约为2.8-11.3m/s;输送压力与输送流量成双曲线特性,且随着气量的增加输送量增大;主进气流量起主导作用并与输送粉煤灰质量流量成单调上升抛物线关系,与固气比成上凸抛物线关系即先增大后减小.研究结果对柱塞式气力输送系统的工程设计、运行和理论研究提供依据并具有指导作用.  相似文献   

8.
气力输送的数值模拟研究   总被引:1,自引:0,他引:1  
对气相湍动能采用修正的κ-ε二方程模型,颗粒相湍动动能采用颗粒动力学方法,发展建立了气力输送的数学物理模型和计算方法,就垂直管中圆柱坐标系下二维悬浮稀相和密相动压气力输送过程进行了初步数值研究,所得结果(包括管压降、气固速度分布、一定输送量下最佳经济速度等)与文献实验结果吻合,为进一步用该法研究气力输送打下了基础.  相似文献   

9.
本文通过对中、低压稀相循环气力输送装置优缺点的分析指出,在输送距离不太长的情况下,该装置的经济技术效果比同类型非循环气力输送装置的高;并根据流体力学理论分析,提出合理设计回气管路,降低压力损耗的方法,为扩大循环气力输送装置的应用范围提供了参考数据。  相似文献   

10.
冷风送料装置为气力输送的一种,属于低压稀相输送。它是利用罗茨风机产生的低压压缩空气输送物料,此方法不仅可起到节电的作用,而且还可以避免了压缩空气压力、流量受其它工序影响而出现系统不稳现象。  相似文献   

11.
舒朝龙 《科技信息》2012,(33):395-396
干除灰系统是火力发电厂的主要辅助系统,干除灰系统故障给主机组的安全经济运行带来极大威胁。因此,对干除灰系统科学合理的使用以及正确的检修、监测及维护显得至关重要。本文以宁夏大唐国际大坝发电有限责任公司浓相气力输灰系统为例,针对出输灰系统的耗气量降低的问题提出了气力输灰系统的改进和优化方法,分析了在运行过程中发生堵管的原因并提出预防措施及处理方法。  相似文献   

12.
粉煤灰浓相气力输送系统的研究与应用   总被引:6,自引:0,他引:6  
设计了一种用于火电厂粉煤灰输送的浓相气力输送系统,讨论了设计和使用过程中关键参数的确定方法,给出了此装置应用于粉煤灰输送的具体建议.该系统具有固气比高、流动速度低、输送距离长等优点。  相似文献   

13.
鉴于国、内外目前尚未对中引式气力输送系统特性进行研究,而它又有独立、串联和远近距离均适应的优点等,所以探讨了中引式气力输送系统的流动模式、管道阻力特性和输送压力频谱特性等。实验结果表明中引式气力输送随着操作气速分别为2、4和8m/s的变化,管内灰栓的流动模式也相应发生变化分别为:柱塞流、栓流和悬浮流;栓流压力频谱振幅最大,易成为独栓,属不稳定流动,输送量与柱塞流相当,柱塞流压力频谱较小,灰栓气栓相间的多栓流属基本稳定流动,悬浮流压力频谱最低,属稳定流动,输送量最低,输送速度最快,管道易磨损;柱塞流、栓流及悬浮流模式,对于给定物料操作气速与输送平均压力之间随着操作气速增加,输送压力逐渐下降。  相似文献   

14.
气力输送设备综述   总被引:3,自引:0,他引:3  
对气力输送设备—仓式泵的应用与研究进行了探讨,针对仓式泵的缺点,介绍了一种能连续供料的新型气力输送设备。稳流仓式泵由三个串联的仓组成,具有供料连续、料流均匀、脉动现象小等优点。该泵不仅适用于高浓度气力输送,也适用于稀相气力输送。  相似文献   

15.
毛新静 《太原科技》2012,(10):91-93
简要介绍了某煤矸石发电厂1号炉、2号炉气力正压密相气力输灰系统及其操作,论述了布袋除尘器飞灰输送逻辑描述、除灰步序,详细分析了DCS控制系统在电厂除灰控制系统中的应用特点。  相似文献   

16.
浓相气力输送粉煤灰的实验研究   总被引:3,自引:0,他引:3  
在内径为80mm,长为210m的水平和垂直输送管道中进行了高压流态化浓相气力输送粉煤灰的实验研究。是到了浓相气力输送粉煤灰的输送特性参数及其影响因素,为粉煤类排放的进一步研究和应用打下了基础。  相似文献   

17.
煤粉气力输送的稳定性严重制约着煤粉燃烧的效率及稳定性,研究了以干燥空气为载气的上出料发送罐小流量煤粉浓相气力输送系统的一般规律,即给煤率随特征参数如流化风量、补气器位置、发送罐压力、补充风量和L型提升管直径的变化。实验结果表明:流化风量增加,给煤率和固气比均先增大后减小;补气器位置的间距增加,给煤率先增大后减小;发送罐的压力增加,给煤率增大;补充风增加,给煤率减小,固气比减小;给煤率在一定范围内与L型提升管的面积成正比。在优化的流化风量和补气器位置的情况下,通过调整发送罐压力、补充风量可实现上出料发送罐小流量煤粉浓相气力输送的连续稳定运行,且给煤量连续可调。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号