首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stellar-mass black holes are found in X-ray-emitting binary systems, where their mass can be determined from the dynamics of their companion stars. Models of stellar evolution have difficulty producing black holes in close binaries with masses more than ten times that of the Sun (>10; ref. 4), which is consistent with the fact that the most massive stellar black holes known so far all have masses within one standard deviation of 10. Here we report a mass of (15.65 +/- 1.45) for the black hole in the recently discovered system M 33 X-7, which is located in the nearby galaxy Messier 33 (M 33) and is the only known black hole that is in an eclipsing binary. To produce such a massive black hole, the progenitor star must have retained much of its outer envelope until after helium fusion in the core was completed. On the other hand, in order for the black hole to be in its present 3.45-day orbit about its (70.0 +/- 6.9) companion, there must have been a 'common envelope' phase of evolution in which a significant amount of mass was lost from the system. We find that the common envelope phase could not have occurred in M 33 X-7 unless the amount of mass lost from the progenitor during its evolution was an order of magnitude less than what is usually assumed in evolutionary models of massive stars.  相似文献   

2.
The intergalactic medium was not completely reionized until approximately a billion years after the Big Bang, as revealed by observations of quasars with redshifts of less than 6.5. It has been difficult to probe to higher redshifts, however, because quasars have historically been identified in optical surveys, which are insensitive to sources at redshifts exceeding 6.5. Here we report observations of a quasar (ULAS?J112001.48+064124.3) at a redshift of 7.085, which is 0.77 billion years after the Big Bang. ULAS?J1120+0641 has a luminosity of 6.3 × 10(13)L(⊙) and hosts a black hole with a mass of 2 × 10(9)M(⊙) (where L(⊙) and M(⊙) are the luminosity and mass of the Sun). The measured radius of the ionized near zone around ULAS?J1120+0641 is 1.9?megaparsecs, a factor of three smaller than is typical for quasars at redshifts between 6.0 and 6.4. The near-zone transmission profile is consistent with a Lyα damping wing, suggesting that the neutral fraction of the intergalactic medium in front of ULAS?J1120+0641 exceeded 0.1.  相似文献   

3.
Gallo E  Fender R  Kaiser C  Russell D  Morganti R  Oosterloo T  Heinz S 《Nature》2005,436(7052):819-821
Black holes undergoing accretion are thought to emit the bulk of their power in the X-ray band by releasing the gravitational potential energy of the infalling matter. At the same time, they are capable of producing highly collimated jets of energy and particles flowing out of the system with relativistic velocities. Here we show that the 10-solar-mass (10M(o)) black hole in the X-ray binary Cygnus X-1 (refs 3-5) is surrounded by a large-scale (approximately 5 pc in diameter) ring-like structure that appears to be inflated by the inner radio jet. We estimate that in order to sustain the observed emission of the ring, the jet of Cygnus X-1 has to carry a kinetic power that can be as high as the bolometric X-ray luminosity of the binary system. This result may imply that low-luminosity stellar-mass black holes as a whole dissipate the bulk of the liberated accretion power in the form of 'dark', radiatively inefficient relativistic outflows, rather than locally in the X-ray-emitting inflow.  相似文献   

4.
Measurements of stellar orbits provide compelling evidence that the compact radio source Sagittarius A* at the Galactic Centre is a black hole four million times the mass of the Sun. With the exception of modest X-ray and infrared flares, Sgr A* is surprisingly faint, suggesting that the accretion rate and radiation efficiency near the event horizon are currently very low. Here we report the presence of a dense gas cloud approximately three times the mass of Earth that is falling into the accretion zone of Sgr A*. Our observations tightly constrain the cloud's orbit to be highly eccentric, with an innermost radius of approach of only ~3,100 times the event horizon that will be reached in 2013. Over the past three years the cloud has begun to disrupt, probably mainly through tidal shearing arising from the black hole's gravitational force. The cloud's dynamic evolution and radiation in the next few years will probe the properties of the accretion flow and the feeding processes of the supermassive black hole. The kilo-electronvolt X-ray emission of Sgr A* may brighten significantly when the cloud reaches pericentre. There may also be a giant radiation flare several years from now if the cloud breaks up and its fragments feed gas into the central accretion zone.  相似文献   

5.
J Greiner  J G Cuby  M J McCaughrean 《Nature》2001,414(6863):522-525
The X-ray source known as GRS1915+105 belongs to a group dubbed 'microquasars'. These objects are binary systems which sporadically eject matter at speeds that appear superluminal, as is the case for some quasars. GRS1915+105 is also one of only two known binary sources thought to contain a maximally spinning black hole. Determining the basic parameters of GRS195+105, such as the masses of the components, will help us to understand jet formation in this system, as well as providing links to other objects which exhibit jets. Using X-ray data, indirect methods have previously been used to infer a variety of masses for the accreting compact object in the range 10-30 solar masses (M middle dot in circle). Here we report a direct measurement of the orbital period and mass function of GRS1915+105, which allow us to deduce a mass of 14 +/- 4 M middle dot in circle for the black hole. Black holes with masses >5-7 M middle dot in circle challenge the conventional picture of black-hole formation in binary systems. Based on the mass estimate, we interpret the distinct X-ray variability of GRS1915+105 as arising from instabilities in an accretion disk that is dominated by radiation pressure, and radiating near the Eddington limit (the point where radiation pressure supports matter against gravity). Also, the mass estimate constrains most models which relate observable X-ray properties to the spin of black holes in microquasars.  相似文献   

6.
收集了89个Seyfert星系样本,利用反响映射法和恒星弥散速度法计算了Seyfert星系的黑洞质量,分别研究了Seyfert 1和Seyfert 2星系的黑洞质量与吸积率、热光度和红移之间的相关性,结果发现Seyfert 1星系的黑洞质量与吸积率、热光度和红移之间具有强相关性,Seyfert 2星系的黑洞质量与吸积率之间具有弱的负相关性,与热光度和红移之间具有弱相关性.两类Seyfert星系的区别除了源于吸积盘倾角不同外,还可能与星系的环境、演化和星系核的活动有关.  相似文献   

7.
收集了109个blazar天体(HBLs 51个,LBLs 40个,FSRQs 18个)的相关观测数据,对该样本的黑洞质量、吸积率、热光度和红移的分布规律进行了统计分析,讨论了吸积率与热光度、黑洞质量与热光度之间的关系,结果发现:(1)存在一个从FSRQs经LBLs到HBLs的演化序列;(2)爱丁顿吸积率是影响blazar天体三个子类之间演化序列的主要因素;(3)blazar天体三个子类的热光度需要进行多普勒效应改正.  相似文献   

8.
Di Matteo T  Springel V  Hernquist L 《Nature》2005,433(7026):604-607
In the early Universe, while galaxies were still forming, black holes as massive as a billion solar masses powered quasars. Supermassive black holes are found at the centres of most galaxies today, where their masses are related to the velocity dispersions of stars in their host galaxies and hence to the mass of the central bulge of the galaxy. This suggests a link between the growth of the black holes and their host galaxies, which has indeed been assumed for a number of years. But the origin of the observed relation between black hole mass and stellar velocity dispersion, and its connection with the evolution of galaxies, have remained unclear. Here we report simulations that simultaneously follow star formation and the growth of black holes during galaxy-galaxy collisions. We find that, in addition to generating a burst of star formation, a merger leads to strong inflows that feed gas to the supermassive black hole and thereby power the quasar. The energy released by the quasar expels enough gas to quench both star formation and further black hole growth. This determines the lifetime of the quasar phase (approaching 100 million years) and explains the relationship between the black hole mass and the stellar velocity dispersion.  相似文献   

9.
A two-solar-mass neutron star measured using Shapiro delay   总被引:1,自引:0,他引:1  
Demorest PB  Pennucci T  Ransom SM  Roberts MS  Hessels JW 《Nature》2010,467(7319):1081-1083
Neutron stars are composed of the densest form of matter known to exist in our Universe, the composition and properties of which are still theoretically uncertain. Measurements of the masses or radii of these objects can strongly constrain the neutron star matter equation of state and rule out theoretical models of their composition. The observed range of neutron star masses, however, has hitherto been too narrow to rule out many predictions of 'exotic' non-nucleonic components. The Shapiro delay is a general-relativistic increase in light travel time through the curved space-time near a massive body. For highly inclined (nearly edge-on) binary millisecond radio pulsar systems, this effect allows us to infer the masses of both the neutron star and its binary companion to high precision. Here we present radio timing observations of the binary millisecond pulsar J1614-2230 that show a strong Shapiro delay signature. We calculate the pulsar mass to be (1.97?±?0.04)M(⊙), which rules out almost all currently proposed hyperon or boson condensate equations of state (M(⊙), solar mass). Quark matter can support a star this massive only if the quarks are strongly interacting and are therefore not 'free' quarks.  相似文献   

10.
Maccarone TJ  Kundu A  Zepf SE  Rhode KL 《Nature》2007,445(7124):183-185
Globular star clusters contain thousands to millions of old stars packed within a region only tens of light years across. Their high stellar densities make it very probable that their member stars will interact or collide. There has accordingly been considerable debate about whether black holes should exist in these star clusters. Some theoretical work suggests that dynamical processes in the densest inner regions of globular clusters may lead to the formation of black holes of approximately 1,000 solar masses. Other numerical simulations instead predict that stellar interactions will eject most or all of the black holes that form in globular clusters. Here we report the X-ray signature of an accreting black hole in a globular cluster associated with the giant elliptical galaxy NGC 4472 (in the Virgo cluster). This object has an X-ray luminosity of about 4 x 10(39) erg s(-1), which rules out any object other than a black hole in such an old stellar population. The X-ray luminosity varies by a factor of seven in a few hours, which excludes the possibility that the object is several neutron stars superposed.  相似文献   

11.
The old, red stars that constitute the bulges of galaxies, and the massive black holes at their centres, are the relics of a period in cosmic history when galaxies formed stars at remarkable rates and active galactic nuclei (AGN) shone brightly as a result of accretion onto black holes. It is widely suspected, but unproved, that the tight correlation between the mass of the black hole and the mass of the stellar bulge results from the AGN quenching the surrounding star formation as it approaches its peak luminosity. X-rays trace emission from AGN unambiguously, whereas powerful star-forming galaxies are usually dust-obscured and are brightest at infrared and submillimetre wavelengths. Here we report submillimetre and X-ray observations that show that rapid star formation was common in the host galaxies of AGN when the Universe was 2-6 billion years old, but that the most vigorous star formation is not observed around black holes above an X-ray luminosity of 10(44) ergs per second. This suppression of star formation in the host galaxy of a powerful AGN is a key prediction of models in which the AGN drives an outflow, expelling the interstellar medium of its host and transforming the galaxy's properties in a brief period of cosmic time.  相似文献   

12.
Many galaxies are thought to have supermassive black holes at their centres-more than a million times the mass of the Sun. Measurements of stellar velocities and the discovery of variable X-ray emission have provided strong evidence in favour of such a black hole at the centre of the Milky Way, but have hitherto been unable to rule out conclusively the presence of alternative concentrations of mass. Here we report ten years of high-resolution astrometric imaging that allows us to trace two-thirds of the orbit of the star currently closest to the compact radio source (and massive black-hole candidate) Sagittarius A*. The observations, which include both pericentre and apocentre passages, show that the star is on a bound, highly elliptical keplerian orbit around Sgr A*, with an orbital period of 15.2 years and a pericentre distance of only 17 light hours. The orbit with the best fit to the observations requires a central point mass of (3.7 +/- 1.5) x 10(6) solar masses (M(*)). The data no longer allow for a central mass composed of a dense cluster of dark stellar objects or a ball of massive, degenerate fermions.  相似文献   

13.
收集了20个射电宁静类星体(radio quiet quasars,RQQs)和97个射电噪类星体(radio loud quasars,RLQs)的红移、5 100的单色光度、Hβ发射线宽度、射电噪度、5 GHz射电光学流量密度、热光度.分别计算了考虑辐射压影响和没有考虑辐射压影响的黑洞质量和爱丁顿比,利用总的5GHz射电光学流量密度计算了射电光度.分析了它们之间的相关性,得到如下结论:RQQs考虑辐射压的黑洞质量与射电噪度、5 GHz射电光度、热光度的相关性比RLQs考虑辐射压的黑洞质量和射电噪度、5 GHz射电光度、热光度的相关性弱;考虑辐射压后,RQQs的黑洞质量和红移的相关性比RLQs的强,RQQs的黑洞质量Mma108 M☉,而且它的吸积未超爱丁顿吸积;由于辐射压对宽线云有影响,且大多数人认为RQQs可能来自吸积盘,表明宽线区和吸积盘可能有关联;考虑辐射压的RQQs和RLQs的黑洞质量与射电噪度、5 GHz射电光度、热光度的相关性比没有考虑辐射压黑洞质量与射电噪度、5GHz射电光度、热光度的相关性好;考虑辐射压后,RQQs和RLQs的黑洞质量—射电噪度分布、黑洞质量—Ηβ发射线宽度分布、射电噪度—爱丁顿比分布的不同说明辐射压对RQQs和RLQs的不同会产生影响.  相似文献   

14.
PKS2155-304是一个典型的TeV源,在全波段都观测到光变.文章利用GeVγ辐射和X辐射观测资料确定GeVγ辐射的基本参量以及相关黑洞质量,利用光学光变周期分析中心双黑洞系统的结构参量,并利用TeV的光变时标确定TeV辐射的区域大小以及离中心的距离.从分析得到如下结论:①在中心有一个双黑洞系统,大黑洞的质量是80.8×107太阳质量,而次黑洞的质量为(3.35-5.20)×107太阳质量.该双黑洞系统的半轴和为(3.67-5.15)×1016cm.②GeVγ辐射的参量与因子来自于离中心黑洞(次黑洞)18~20斯瓦西半径处.GeVγ辐射的Doppler因子为0.31~0.45,视角为8.5°~9.4°.这里的两个值分别对应于不同的系数λ.③TeVγ辐射来自于距中心2.5~2.8斯瓦西半径处.  相似文献   

15.
Only a few of the dozen or so known stellar-mass black holes have been observed away from the plane of the Galaxy. Those few could have been ejected from the plane as a result of a 'kick' received during a supernova explosion, or they could be remnants of the population of massive stars formed in the early stages of evolution of the Galaxy. Determining their orbital motion should help to distinguish between these options. Here we report the transverse motion (in the plane of the sky) for the black-hole X-ray nova XTE J1118+480 (refs 2, 3, 4, 5), from which we derive a large space velocity. This X-ray binary system has an eccentric orbit around the Galactic Centre, like most objects in the halo of the Galaxy, such as ancient stars and globular clusters. The properties of the system suggest that its age is comparable to or greater than the age of the Galactic disk. Only an extraordinary 'kick' from a supernova could have launched the black hole into an orbit like this from a birthplace in the disk of the Galaxy.  相似文献   

16.
文章利用Blazar中γ射线中光深对黑洞质量的依赖关系,搜集了blazar的相关观测数据,包括X射线和γ射线的流量以及短光变时标,分析了33个blazars,得到中心黑洞质量,辐射区距离,辐射角以及多谱勒因子等重要参量.结果表明:中心黑洞质量的范围是(1.32~151.49)10^7M+(M+是太阳质量),辐射区范围(16.8~992.9)Rg(Rg是Schwild半径),辐射角的范围是1.31°-56.34°,多谱勒因子的范围0.21~4.11.  相似文献   

17.
Jenet FA  Ransom SM 《Nature》2004,428(6986):919-921
Two pulsars (PSR J0737-3039A and B) were recently discovered in highly relativistic orbits around one another. The system contains a rapidly rotating pulsar with a spin period of 22.7 ms and a slow companion with a spin period of 2.77 s, referred to here as 'A' and 'B', respectively. A unique property of the system is that the pulsed radio flux from B increases systematically by almost two orders of magnitude during two short portions of its orbit. Here we report a geometrical model of the system that simultaneously explains the intensity variations of B and provides constraints on the spin axis orientation and emission geometry of A. Our model assumes that B's pulsed radio flux increases when illuminated by emission from A. We predict that A's pulse profile will evolve considerably over the next several years owing to geodetic precession until it disappears entirely in 15-20 years.  相似文献   

18.
从Vaidya-Bonner黑洞周围时空中旋量粒子的Dirac方程经分离变量并退耦后的径向方程和角向方程出发,导出了Dirac粒子的能级方程.得到了粒子的能量分布不仅与粒子的质量、电荷、自旋量子数、角量子数、磁量子数有关,还与黑洞周围的时空结构及视界变化有关.给出了Vaidya-Bonner黑洞白发辐射Dirac粒子的能量条件.  相似文献   

19.
为了考察活动星系核中心黑洞质量对其进动的影响,本文对活动星系核中吸积盘驱使黑洞及其喷流进动的模型即盘致进动模型作了进一步研究.首先,在进动周期-绝对星等关系中代入由观测得到的黑洞质量,结果弥散度有所减小;其次,对此模型中黑洞质量与其进动锥角在演化过程中应有的关系做了理论分析并绘出理论曲线,发现它们之间是反相关的;最后,详细考察黑洞质量和进动锥角观测值的实际分布,发现理论曲线与实际数据是相吻合的.所以,盘致进动模型对黑洞进动现象的解释是比较合理的.  相似文献   

20.
Zwart SF  Baumgardt H  Hut P  Makino J  McMillan SL 《Nature》2004,428(6984):724-726
A luminous X-ray source is associated with MGG 11--a cluster of young stars approximately 200 pc from the centre of the starburst galaxy M 82 (refs 1, 2). The properties of this source are best explained by invoking a black hole with a mass of at least 350 solar masses (350 M(o)), which is intermediate between stellar-mass and supermassive black holes. A nearby but somewhat more massive cluster (MGG 9) shows no evidence of such an intermediate-mass black hole, raising the issue of just what physical characteristics of the clusters can account for this difference. Here we report numerical simulations of the evolution and motion of stars within the clusters, where stars are allowed to merge with each other. We find that for MGG 11 dynamical friction leads to the massive stars sinking rapidly to the centre of the cluster, where they participate in a runaway collision. This produces a star of 800-3,000 M(o) which ultimately collapses to a black hole of intermediate mass. No such runaway occurs in the cluster MGG 9, because the larger cluster radius leads to a mass segregation timescale a factor of five longer than for MGG 11.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号