首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
M Chalfie  E Wolinsky 《Nature》1990,345(6274):410-416
The dominant mutation deg-1(u38) results in a toxic gene product that leads to the late-onset degeneration of a small number of neurons in the nematode Caenorhabditis elegans. Both intragenic and extragenic mutations as well as changes in wild-type gene dosage can delay or block the time of onset of the neuronal deaths. The deg-1 gene has been cloned and a partial complementary DNA reveals that the gene encodes a novel protein that may act as a membrane receptor. Because the late-onset loss of specific sets of neurons, often as a result of dominant mutations, is characteristic of several human neurodegenerative diseases, the analysis of the deg-1 gene and its suppressors may provide a means of understanding the mechanisms underlying some of these human diseases.  相似文献   

3.
Sentürk A  Pfennig S  Weiss A  Burk K  Acker-Palmer A 《Nature》2011,472(7343):356-360
Coordinated migration of neurons in the developing and adult brain is essential for its proper function. The secreted glycoprotein Reelin (also known as RELN) guides migration of neurons by binding to two lipoprotein receptors, the very-low-density lipoprotein receptor (VLDLR) and apolipoprotein E receptor 2 (ApoER2, also known as LRP8). Loss of Reelin function in humans results in the severe developmental disorder lissencephaly and it has also been associated with other neurological disorders such as epilepsy, schizophrenia and Alzheimer's disease. The molecular mechanisms by which Reelin activates its receptors and controls cellular functions are largely unknown. Here we show that the neuronal guidance cues ephrin B proteins are essential for Reelin signalling during the development of laminated structures in the brain. We show that ephrin Bs genetically interact with Reelin. Notably, compound mouse mutants (Reln(+/-); Efnb3(-/-) or Reln(+/-); Efnb2(-/-)) and triple ephrin B1, B2, B3 knockouts show neuronal migration defects that recapitulate the ones observed in the neocortex, hippocampus and cerebellum of the reeler mouse. Mechanistically, we show that Reelin binds to the extracellular domain of ephrin Bs, which associate at the membrane with VLDLR and ApoER2 in neurons. Clustering of ephrin Bs leads to the recruitment and phosphorylation of Dab1 which is necessary for Reelin signalling. Conversely, loss of function of ephrin Bs severely impairs Reelin-induced Dab1 phosphorylation. Importantly, activation of ephrin Bs can rescue the reeler neuronal migration defects in the absence of Reelin protein. Together, our results identify ephrin Bs as essential components of the Reelin receptor/signalling pathway to control neuronal migration during the development of the nervous system.  相似文献   

4.
A minority of individuals experiencing traumatic events develop anxiety disorders. The reason for the lack of correspondence between the prevalence of exposure to psychological trauma and the development of anxiety is unknown. Extracellular proteolysis contributes to fear-associated responses by facilitating neuronal plasticity at the neuron-matrix interface. Here we show in mice that the serine protease neuropsin is critical for stress-related plasticity in the amygdala by regulating the dynamics of the EphB2-NMDA-receptor interaction, the expression of Fkbp5 and anxiety-like behaviour. Stress results in neuropsin-dependent cleavage of EphB2 in the amygdala causing dissociation of EphB2 from the NR1 subunit of the NMDA receptor and promoting membrane turnover of EphB2 receptors. Dynamic EphB2-NR1 interaction enhances NMDA receptor current, induces Fkbp5 gene expression and enhances behavioural signatures of anxiety. On stress, neuropsin-deficient mice do not show EphB2 cleavage and its dissociation from NR1 resulting in a static EphB2-NR1 interaction, attenuated induction of the Fkbp5 gene and low anxiety. The behavioural response to stress can be restored by intra-amygdala injection of neuropsin into neuropsin-deficient mice and disrupted by the injection of either anti-EphB2 antibodies or silencing the Fkbp5 gene in the amygdala of wild-type mice. Our findings establish a novel neuronal pathway linking stress-induced proteolysis of EphB2 in the amygdala to anxiety.  相似文献   

5.
6.
弱智儿童的脑机制是我国特殊教育界尚未探讨的一个领域。从智力、弱智和学习的本质出发,探讨了弱智儿童脑发育的机制和脑活动机制,认为弱智儿童脑发育的正常机制因为先天、后天的遗传异常或损伤遭到了破坏,由此导致了神经系统的传导失能,并表现为神经环路的形成困难、传导的信息堵塞和消失这些主要的神经活动特点。提出了干预或教育弱智儿童的三大措施,包括食物或物质干预、文化给予以及感官训练与文化、言语的结合。  相似文献   

7.
8.
Johnston RJ  Hobert O 《Nature》2003,426(6968):845-849
How left/right functional asymmetry is layered on top of an anatomically symmetrical nervous system is poorly understood. In the nematode Caenorhabditis elegans, two morphologically bilateral taste receptor neurons, ASE left (ASEL) and ASE right (ASER), display a left/right asymmetrical expression pattern of putative chemoreceptor genes that correlates with a diversification of chemosensory specificities. Here we show that a previously undefined microRNA termed lsy-6 controls this neuronal left/right asymmetry of chemosensory receptor expression. lsy-6 mutants that we retrieved from a genetic screen for defects in neuronal left/right asymmetry display a loss of the ASEL-specific chemoreceptor expression profile with a concomitant gain of the ASER-specific profile. A lsy-6 reporter gene construct is expressed in less than ten neurons including ASEL, but not ASER. lsy-6 exerts its effects on ASEL through repression of cog-1, an Nkx-type homeobox gene, which contains a lsy-6 complementary site in its 3' untranslated region and that has been shown to control ASE-specific chemoreceptor expression profiles. lsy-6 is the first microRNA to our knowledge with a role in neuronal patterning, providing new insights into left/right axis formation.  相似文献   

9.
A specific amyloid-beta protein assembly in the brain impairs memory   总被引:4,自引:0,他引:4  
Lesné S  Koh MT  Kotilinek L  Kayed R  Glabe CG  Yang A  Gallagher M  Ashe KH 《Nature》2006,440(7082):352-357
Memory function often declines with age, and is believed to deteriorate initially because of changes in synaptic function rather than loss of neurons. Some individuals then go on to develop Alzheimer's disease with neurodegeneration. Here we use Tg2576 mice, which express a human amyloid-beta precursor protein (APP) variant linked to Alzheimer's disease, to investigate the cause of memory decline in the absence of neurodegeneration or amyloid-beta protein amyloidosis. Young Tg2576 mice (< 6 months old) have normal memory and lack neuropathology, middle-aged mice (6-14 months old) develop memory deficits without neuronal loss, and old mice (> 14 months old) form abundant neuritic plaques containing amyloid-beta (refs 3-6). We found that memory deficits in middle-aged Tg2576 mice are caused by the extracellular accumulation of a 56-kDa soluble amyloid-beta assembly, which we term Abeta*56 (Abeta star 56). Abeta*56 purified from the brains of impaired Tg2576 mice disrupts memory when administered to young rats. We propose that Abeta*56 impairs memory independently of plaques or neuronal loss, and may contribute to cognitive deficits associated with Alzheimer's disease.  相似文献   

10.
11.
E Cooper  S Couturier  M Ballivet 《Nature》1991,350(6315):235-238
Neuronal nicotinic acetylcholine receptors are members of a gene family of ligand-gated transmitter receptors that includes muscle nicotinic receptors, GABAA receptors and glycine receptors. Several lines of evidence indicate that neuronal nicotinic receptors can be made up of only two subunits, an alpha (alpha) subunit which binds ligand, and a non-alpha (n alpha) or beta (beta) subunit. The stoichiometry of each subunit in the functional receptor has been difficult to assess, however. Estimates of the molecular weight of neuronal nicotonic receptor macromolecules suggest that these receptors contain at least four subunits but probably not more than five. We have examined the subunit stoichiometry of the chick neuronal alpha 4/n alpha 1 receptor by first using site-directed mutagenesis to create subunits that confer different single channel properties on the receptor. Co-injection with wild-type and mutant subunits led to the appearance of receptors with wild-type, mutant and hybrid conductances. From the number of hybrid conductances, we could deduce the number of each subunit in the functional receptor.  相似文献   

12.
ATP activates damage-sensing neurons (nociceptors) and can evoke a sensation of pain. The ATP receptor P2X3 is selectively expressed by nociceptors and is one of seven ATP-gated, cation-selective ion channels. Here we demonstrate that ablation of the P2X3 gene results in the loss of rapidly desensitizing ATP-gated cation currents in dorsal root ganglion neurons, and that the responses of nodose ganglion neurons to ATP show altered kinetics and pharmacology resulting from the loss of expression of P2X(2/3) heteromultimers. Null mutants have normal sensorimotor function. Behavioural responses to noxious mechanical and thermal stimuli are also normal, although formalin-induced pain behaviour is reduced. In contrast, deletion of the P2X3 receptor causes enhanced thermal hyperalgesia in chronic inflammation. Notably, although dorsal-horn neuronal responses to mechanical and noxious heat application are normal, P2X3-null mice are unable to code the intensity of non-noxious 'warming' stimuli.  相似文献   

13.
Liou YC  Sun A  Ryo A  Zhou XZ  Yu ZX  Huang HK  Uchida T  Bronson R  Bing G  Li X  Hunter T  Lu KP 《Nature》2003,424(6948):556-561
The neuropathological hallmarks of Alzheimer's disease and other tauopathies include senile plaques and/or neurofibrillary tangles. Although mouse models have been created by overexpressing specific proteins including beta-amyloid precursor protein, presenilin and tau, no model has been generated by gene knockout. Phosphorylation of tau and other proteins on serine or threonine residues preceding proline seems to precede tangle formation and neurodegeneration in Alzheimer's disease. Notably, these phospho(Ser/Thr)-Pro motifs exist in two distinct conformations, whose conversion in some proteins is catalysed by the Pin1 prolyl isomerase. Pin1 activity can directly restore the conformation and function of phosphorylated tau or it can do so indirectly by promoting its dephosphorylation, which suggests that Pin1 is involved in neurodegeneration; however, genetic evidence is lacking. Here we show that Pin1 expression is inversely correlated with predicted neuronal vulnerability and actual neurofibrillary degeneration in Alzheimer's disease. Pin1 knockout in mice causes progressive age-dependent neuropathy characterized by motor and behavioural deficits, tau hyperphosphorylation, tau filament formation and neuronal degeneration. Thus, Pin1 is pivotal in protecting against age-dependent neurodegeneration, providing insight into the pathogenesis and treatment of Alzheimer's disease and other tauopathies.  相似文献   

14.
Requirement for a functional Rb-1 gene in murine development.   总被引:86,自引:0,他引:86  
Human retinoblastomas can occur both as hereditary and as sporadic cases. Knudson's proposal that they result from two mutational events, of which one is present in the germ line in hereditary cases, has been confirmed by more recent molecular analysis, which has shown both events to involve loss or mutational inactivation of the same gene, RB-1 (ref. 2). RB-1 heterozygosity also predisposes to osteosarcoma, and RB-1 allele losses are seen in sporadic lung, breast, prostate and bladder carcinomas. RB-1 is expressed in most, if not all, tissues and codes for a nuclear phosphoprotein which becomes hypophosphorylated in the G0 growth arrest state and in the G1 phase of the cell cycle. To gain a further insight into the role of RB-1 we and other groups have generated mice carrying an inactivated allele of the homologous gene, Rb-1 (ref. 10), by gene targeting. We report here that young heterozygous mice do not appear abnormal and do not develop retinoblastoma at a detectable frequency. However, homozygous mutant embryos fail to reach term and show a number of abnormalities in neural and haematopoietic development. Broadly similar results are reported by the other groups.  相似文献   

15.
Numerous inherited retinal degenerations exist in animals and humans, in which photoreceptors inexplicably degenerate and disappear. In RCS rats with inherited retinal dystrophy, the mutant gene is expressed in the retinal pigment epithelial (RPE) cell, and leads to the loss of photoreceptor cells. Photoreceptors can be rescued from degeneration if they are juxtaposed to wild-type RPE cells in experimental chimaeras or by the transplantation of RPE cells from normal rats. In both cases, the rescue effect extends beyond the immediate boundaries of the normal RPE cells, suggesting trophic action of a diffusible factor(s) from the normal RPE cells. We considered that the fibroblast growth factors, aFGF and bFGF, might have such a trophic role as they are found in the retina and RPE cells; bFGF acts as a neurotrophic agent after axonal injury in several regions of the central nervous system, and bFGF induces retinal regeneration from developing RPE cells. Here we report that subretinal injection of bFGF results in extensive rescue of photoreceptors in RCS rats for at least two months after the injection, and that intravitreal injection of bFGF results in even more widespread rescue, across almost the entire retina. The findings demonstrate for the first time that bFGF can act as a survival-promoting neurotrophic factor in a hereditary neuronal degeneration of the central nervous system.  相似文献   

16.
The development of methods for introducing foreign genes into the germ line of mice provides an approach for studying mechanisms underlying inducible and developmental gene regulation. Transgenic animals expressing foreign genes have thus been used to test models of the role played by specific DNA sequences in determining cell-specific expression. Results from these experiments suggest that tissue-specific expression is the consequence of a cis-acting regulatory sequence. However, these results do not exclude the possibility that cell-specific expression of some genes might be 'coded' by combinations of regulatory elements. We have previously described the production of transgenic mice from eggs microinjected with metallothionein-I/growth hormone (MGH) fusion genes, and now demonstrate that the juxtaposition of sequences from two different genes can be deciphered by cells to generate novel tissue specificities. Although expression of the endogenous metallothionein and growth hormone genes has not been detected in neuronal cells, transgenic mice clearly express an MGH fusion gene in a restricted subset of neurones. These results suggest a model in which tissue-specific patterns of expression of certain genes are determined by combinations of cis-acting regulatory sequences.  相似文献   

17.
Somatic mutations, either spontaneous or produced by identifiable mutagens, are thought to be important in the aetiology of cancer and in the ageing process. The study of somatic mutations in human cells in vivo has recently been made possible by the development of techniques for enumeration and clonal expansion of lymphocytes mutated at the chromosome X-linked hypoxanthine phosphoribosyl transferase (HPRT) locus. We have studied the molecular basis of in vivo hprt mutations in human lymphocytes and report here that a surprisingly high proportion (57%) involve substantial gene alterations which are not evident cytogenetically. These major gene alterations include deletions, exon amplifications and novel, sometimes amplified, bands on Southern analysis. Such changes emphasize the fluid nature of information in DNA and may be indicative of general mechanisms by which functional gene loss is involved in the aetiology of cancer and the homeostatic failure of ageing.  相似文献   

18.
19.
Developmental basis of limblessness and axial patterning in snakes.   总被引:12,自引:0,他引:12  
M J Cohn  C Tickle 《Nature》1999,399(6735):474-479
The evolution of snakes involved major changes in vertebrate body plan organization, but the developmental basis of those changes is unknown. The python axial skeleton consists of hundreds of similar vertebrae, forelimbs are absent and hindlimbs are severely reduced. Combined limb loss and trunk elongation is found in many vertebrate taxa, suggesting that these changes may be linked by a common developmental mechanism. Here we show that Hox gene expression domains are expanded along the body axis in python embryos, and that this can account for both the absence of forelimbs and the expansion of thoracic identity in the axial skeleton. Hindlimb buds are initiated, but apical-ridge and polarizing-region signalling pathways that are normally required for limb development are not activated. Leg bud outgrowth and signalling by Sonic hedgehog in pythons can be rescued by application of fibroblast growth factor or by recombination with chick apical ridge. The failure to activate these signalling pathways during normal python development may also stem from changes in Hox gene expression that occurred early in snake evolution.  相似文献   

20.
A major impediment in the treatment of neurological diseases is the presence of the blood-brain barrier, which precludes the entry of therapeutic molecules from blood to brain. Here we show that a short peptide derived from rabies virus glycoprotein (RVG) enables the transvascular delivery of small interfering RNA (siRNA) to the brain. This 29-amino-acid peptide specifically binds to the acetylcholine receptor expressed by neuronal cells. To enable siRNA binding, a chimaeric peptide was synthesized by adding nonamer arginine residues at the carboxy terminus of RVG. This RVG-9R peptide was able to bind and transduce siRNA to neuronal cells in vitro, resulting in efficient gene silencing. After intravenous injection into mice, RVG-9R delivered siRNA to the neuronal cells, resulting in specific gene silencing within the brain. Furthermore, intravenous treatment with RVG-9R-bound antiviral siRNA afforded robust protection against fatal viral encephalitis in mice. Repeated administration of RVG-9R-bound siRNA did not induce inflammatory cytokines or anti-peptide antibodies. Thus, RVG-9R provides a safe and noninvasive approach for the delivery of siRNA and potentially other therapeutic molecules across the blood-brain barrier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号