首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用均相共沉淀法, 通过调节前驱体溶液的pH值和尿素浓度, 经700 ℃烧结后合成一系列Y2O3∶Er3+,Yb3+上转换微纳米晶颗粒. 用X射线衍射(XRD)、 透射电子显微镜(TEM)、 Fourier变换红外光谱(FITR)和荧光光谱对样品的物相结构、 微观形貌和发光性能进行表征, 并分析上转换机理. 实验结果表明: 前驱体溶液中的pH值对Y2O3∶Er3+,Yb3+粒径影响较大, 随着pH值的升高, 粒径明显增大, 样品在绿色(500~600 nm)和红色(650~700 nm)的上转换荧光强度明显增强, 红绿比逐渐减小; 尿素浓度对Y2O3∶Er3+,Yb3+纳米颗粒的影响较小.  相似文献   

2.
以金为催化剂,利用热蒸发方法合成掺杂铒(Er)的ZnS纳米带。X射线衍射(XRD)结果表明Er掺杂的ZnS纳米带仍具有六方纤锌矿结构。采用激发波长为244nm激发样品,发现Er掺杂的ZnS纳米带的光致发光(PL)谱中共有5个发光峰,它们的位置为437,520,549,673和805nm,分别对应ZnS纳米带本身缺陷,Au离子掺杂,以及Er~(3+)离子~4S_(3/2)-~4I_(15/2),~4F_(9/2)-~4I_(15/2)和~4I_(9/2)-~4I_(15/2)跃迁引起的发光。  相似文献   

3.
采用溶胶 凝胶法合成NaYF4∶Er3+,Yb3+纳米晶. 在980 nm红外激光照射下, 肉眼可观察到明亮的上转换发光; X射线粉末衍射(XRD)结果表明, 该纳米晶属于立方晶体结构; 透射电镜(TEM)照片显示, 晶粒为圆球形, 分散性好, 平均尺寸为70 nm, 符合生物标记过程中对材料的要求. 用荧光光谱仪记录了该上转换光谱, 并对发光机理进行了探讨.  相似文献   

4.
用高温热分解法制备摩尔分数为18%的Yb和摩尔分数为2%的Er共掺杂α-NaYF4, α-NaLuF4,β-NaYF4,β-NaLuF4和LiYF4氟化物纳米晶, 并用X射线衍射(XRD)、 透射电子显微镜(TEM)和光致发光光谱表征样品的晶体结构、 形貌和发光性能. 结果表明: 所制备的样品均为纯相; 不同的氟化物纳米晶样品尺寸均匀, 粒径为10~15 nm; 在980 nm近红外激光激发下,所制备的氟化物纳米晶在1 550 nm附近均有下转换发射, 其中β-NaLuF4∶Yb,Er纳米晶在1 550 nm处的发射最强.  相似文献   

5.
利用时间分辨激光诱导荧光光谱技术, 用262 nm和276 nm紫外激光对原子数分数为x(Er3+)=10.5%和x(Er3+)=8.4%两种情况下Er3+ ∶YAG晶体的4D5/2和2H9/2能级分别共振激发, 记录了每种情况下的荧光发射谱, 对其中所有荧光谱峰对应的能级跃迁做了详细标定. 用Judd-Ofelt理论计算其辐射跃迁几率, 发现实验荧光强度比和理论辐射跃迁几率比基本一致.  相似文献   

6.
利用LSS(Liquid-Solid-Solution)方法,通过改变稀土元素Tb~(3+)离子的掺杂浓度,制备了一系列晶粒尺寸小、形貌均匀的Tb~(3+)离子掺杂CaF_2纳米晶粒.采用透射电子显微镜(TEM)和X射线粉末衍射仪(XRD)表征制备样品的形貌和晶体结构;用光致发光光谱(PL)表征不同掺杂浓度下样品的发光性能.实验结果表明:所有样品均保持立方萤石结构,无其他杂质相.光致发光测试表明Tb~(3+)离子最佳掺杂浓度为10%;在325 nm波长激发下,在545 nm有最强绿光发光峰,杰出的荧光特性使Tb~(3+)离子掺杂CaF_2纳米晶粒在荧光标记应用中成为一种有前景的绿色荧光材料.  相似文献   

7.
Ni增强Er在富硅氮化硅薄膜中的光致发光   总被引:1,自引:0,他引:1  
采用反应磁控溅射技术沉积了掺Er的富硅氮化硅(SRN:Er)薄膜和SRN:Er/Ni3个周期的超晶格,两种薄膜都在1100℃进行退火实验。SRN:Er薄膜的光致发光谱为一个峰位在665~750nm的发光带和一个峰位在1.54μm的发光带,前者来源于SRN薄膜中的纳米硅,后者为Er3+的特征发射。SRN:Er/Ni超晶格的光致发光谱上出现Er3+在520,550和850nm附近的精细结构,并且Er3+在1.54μm的发光有12倍的增强。光谱精细结构的出现证明Er3+的微观环境由于掺Ni而变得有序。与在SRN中相比,在这种有序环境中Er3+的光学活性有明显的增强。拉曼散射光谱测量证明在SRN:Er/Ni超晶格中纳米硅的数目比在SRN:Er薄膜中有一定的增加。因而,Er3+1.54μm发光12倍的增强是Er3+本身光学活性的增强和纳米硅数目的增加共同作用的结果。  相似文献   

8.
Tb3+和Gd3+掺杂的纳米TiO2薄膜的制备及发光性能与发光机   总被引:1,自引:0,他引:1  
以钛酸正丁酯[Ti(OBu)4]为前驱体, 采用溶胶 凝胶法制备Tb3+和Gd3+共掺杂的纳米TiO2发光薄膜, 并探讨了Gd3+对Tb3+的增敏作用机理. 通过X射线衍射(XRD)、 TG/DTA综合热分析仪、 傅里叶变换红外仪(FTIR)、 透射电子显微镜(TEM)和光致发光(PL)光谱分别对不同制备条件下的TiO2薄膜进行了表征. 结果表明, TiO2薄膜具有一定的择优取向, 晶相为锐钛矿相, 形成了良好有序的晶体结构, 且样品粒径分布均匀, 颗粒大小约为15 nm; 以230 nm作为激发光, Gd3+的共掺对纳米TiO2发光薄膜中Tb3+的发光有显著增强作用.  相似文献   

9.
不同激发波长下多孔硅的光致发光研究   总被引:1,自引:0,他引:1  
采用阳极氧化法腐蚀n型Si(111)片,制备了多孔硅样品.利用荧光分光光度计对样品光致发光和光致发光激发特性进行了研究,发现多孔硅样品的光致发光谱上有2个发光峰,其中心分别位于640 nm和565 nm.基于前人的报道和本实验结果的分析,认为多孔硅的光致发光来源于纳米硅颗粒中光生载流子弛豫到其表面态上然后发生辐射复合.进一步通过实验证明,640 nm处的发光峰与纳米硅颗粒表面的Si-O复合物有关,而565 nm处的发光峰与其它发光中心有关.  相似文献   

10.
【目的】研究金属有机物气相外延制备的多量子阱结构GaN材料的变温光致发光谱,探讨多量子阱结构GaN的发光机制。【方法】对样品进行变温光致发光谱测试,从发光强度和发光峰位两个角度研究样品的发光机制。【结果】在10~300K温度范围内光致发光谱共有4个发光峰,温度为10K时观察到的发光峰峰值波长分别位于355,369和532nm,100K时出现峰值波长为361nm的新发光峰。【结论】分析认为位于355,361,369和532nm的多峰发光结构分别与激发光源、激子发光、带边发光、量子阱发光和黄带发光相关。361nm附近带边发光光子能量与温度的变化规律与Vanshni经验公式吻合,369nm附近量子阱发光峰峰位随温度变化呈"S"型。  相似文献   

11.
利用超声喷雾热解方法以不同的Al掺杂量在石英衬底上制备了N-Al共掺ZnO薄膜,并对其光学性能进行了研究.采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、紫外可见分光光度计(UV)和光致发光谱(PL)表征了样品的晶体结构、表面形貌、透过率和光致发光性能.结果表明:所制备薄膜具有较高光学质量,并且Al掺杂量对N-Al共掺ZnO薄膜的光学性能有很大影响,当n(Zn)∶n(N)∶n(Al)=1∶3∶0.12时,UV光谱的吸收边蓝移最多,带隙展宽最大.PL谱测试结果显示此样品近带边紫外发光峰蓝移至384.9nm.  相似文献   

12.
以Na2S·9H2O为硫源,柠檬酸为稳定剂,采用溶剂热法制备了ZnS:Mn纳米晶.通过X射线衍射谱.拉曼光谱和光致发光谱分别研究了ZnS:Mn纳米晶的微结构和发光性能.结果表明:所制备的ZnS:Mn纳米晶均具有立方结构,颗粒尺寸约为2~4nm.掺杂Mn2+替代Zn2+处在置换状态.光致发光谱测试表明纯ZnS纳米晶仅存在516cm-1的弱发射峰.随着Mn2+含量增加,在603cm-1处出现了一个强的Mn2+发光特征峰,该发射峰归因于4T1→6A1的锰离子跃迁.随着掺杂锰量的增加,该发射峰强度呈现非单调的变化,当Mn离子掺杂量为10%时,发射峰强度达到最大值.  相似文献   

13.
以柠檬酸三钠为络合剂,硝酸镧、硝酸钐、偏钒酸铵为主要原料,采用水热法于180℃反应12 h,制备了一系列La1-xVO4:x Sm3+(x=0,1.0%,1.5%,2.0%,2.5%,3.0%,4.0%)样品。通过X射线粉末衍射、场发射扫描电镜和荧光光谱对样品的结构、形貌以及发光性能进行了表征。结果表明:所合成样品为LaVO4的四方相和单斜相混合晶体,其形貌为六面体形和纳米颗粒;在311 nm波长激发下,LaVO4:Sm3+样品的最强发射峰位于602 nm处,对应于Sm3+4G5/26H7/2跃迁,且Sm3+最佳掺杂摩尔浓度为2.0%。  相似文献   

14.
用高温固相法制备非稀土掺杂的Li6(La2Ca)Nb2O12∶Mn4+远红色发光荧光粉, 并通过X射线衍射和光谱技术研究荧光粉的晶体结构和发光性质. 结果表明, 在Li6(La2Ca)Nb2O12∶Mn4+的荧光光谱中, 以327,494 nm为中心出现2个宽激发带, 在700 nm远红光区出现Mn4+2Eg4A2g跃迁发射峰, 其活化能ΔE=0.437 eV, 即该荧光粉具有较好的热稳定性.  相似文献   

15.
采用凝胶-燃烧法合成了CaMoO_4:Tb(3+)绿色荧光粉,借助X射线粉末衍射仪(XRD)、场发射扫描电镜(FE-SEM)、荧光光谱仪(PL)对样品的晶体结构、形貌、发光特性等进行分析,结果表明:所得CaMoO_4:Tb(3+)绿色荧光粉,借助X射线粉末衍射仪(XRD)、场发射扫描电镜(FE-SEM)、荧光光谱仪(PL)对样品的晶体结构、形貌、发光特性等进行分析,结果表明:所得CaMoO_4:Tb(3+)样品为四方白钨矿型结构,平均粒径为450 nm左右;CaMoO_4:Tb(3+)样品为四方白钨矿型结构,平均粒径为450 nm左右;CaMoO_4:Tb(3+)荧光粉在276 nm紫外光激发下发射绿光,色度坐标为(0.2741,0.5683);Tb(3+)荧光粉在276 nm紫外光激发下发射绿光,色度坐标为(0.2741,0.5683);Tb(3+)最佳掺杂量为x=0.025 mol,柠檬酸的最佳加入量为a=n(NO(3+)最佳掺杂量为x=0.025 mol,柠檬酸的最佳加入量为a=n(NO(3-))/n(C_6H_8O_7)=3.5,最佳点火温度为650℃。  相似文献   

16.
Mn掺杂GaN纳米条的制备和性质的研究   总被引:1,自引:0,他引:1  
通过在1000℃下氨化锰掺杂Ga2O3薄膜制备了大量GaMnN纳米条。采用此法得到的剑状Mn掺杂GaN纳米条是六方纤锌矿结构,Mn的原子百分比是5.43%,纳米条的厚度大约为100 nm,宽度为200~400nm。X射线衍射(XRD)、扫描电镜(SEM)、透射电子显微镜(TEM)、高分辨透射电子显微镜(HRTEM)、选区电子衍射(SAED)、X射线光电子能谱(XPS)和荧光分光光度计(PL)用于表征所制备纳米条形貌及光学性质。室温下以325 nm波长的光激发样品表面,发现由于Mn的掺杂使GaN的发光峰有较大的红移。最后,简单讨论了GaN纳米条的生长机制。  相似文献   

17.
通过溶剂挥发法生长出红色棒状K_2TaF_7∶Mn~(4+)发光晶体,通过X线单晶衍射确定其晶体结构及相关晶胞参数.通过对样品的发光性能研究,样品最强激发带位于466 nm左右的蓝光区,半峰宽约为70 nm;最强发射位于628 nm处.当n_(Mn~(4+))∶n_(K_2TaF_7)为35%时所得晶体的红光发射最强,外量子效率高达49.2%.将K_2TaF_7∶Mn~(4+)发光晶体、YAG∶Ce~(3+)黄色荧光粉和蓝光GaN芯片组装成暖白光LED,所得器件具有优异的光电性能.  相似文献   

18.
采用热分解法合成了一系列Ca/RE(mol)比例及掺杂浓度不同的CaYF2:RE(RE=Yb3+,Er3+)上转换纳米发光材料,在980nm红外激光照射下,肉眼可观察到明亮的黄、绿色上转换发光.通过X射线衍射(XRD)、透射电镜(TEM)、荧光光谱仪对样品进行表征.结果表明,Ca/RE(mol)比例为3,Yb3+和Er3+掺杂浓度分别为20%、2%(mol)时得到发光性能较好的立方相CaYF2:Yb,Er上转换纳米材料.980nm红外光激发下,Yb3+和Er3+共掺的CaYF2:Yb,Er发出分别来自于Er3+的2 H9/2→4I15/2跃迁的蓝光、2 H11/2,4S3/2→4I15/2跃迁的绿光和4F9/2→4I15/2跃迁的红光发射,且Er3+的红、绿光发射均为双光子过程,蓝色发光为三光子过程.  相似文献   

19.
采用凝胶-燃烧法合成了LiY(MoO_4)_2:Dy(3+)黄色荧光粉,借助XRD、FE-SEM、荧光光谱仪对样品的晶体结构、形貌、发光特性等进行了分析。结果表明:所得LiY(MoO_4)_2:Dy(3+)黄色荧光粉,借助XRD、FE-SEM、荧光光谱仪对样品的晶体结构、形貌、发光特性等进行了分析。结果表明:所得LiY(MoO_4)_2:Dy(3+)样品为四方白钨矿型结构,平均粒径为600nm左右;样品的发射光谱由位于488nm较强的蓝光发射、575nm很强的黄光发射和663nm较弱的红光发射组成,CIE1931色坐标为(0.3999,0.4448),位于黄光区;Dy(3+)样品为四方白钨矿型结构,平均粒径为600nm左右;样品的发射光谱由位于488nm较强的蓝光发射、575nm很强的黄光发射和663nm较弱的红光发射组成,CIE1931色坐标为(0.3999,0.4448),位于黄光区;Dy(3+)最佳掺杂量为x=0.050mol;柠檬酸的最佳加入量为n(NO_3(3+)最佳掺杂量为x=0.050mol;柠檬酸的最佳加入量为n(NO_3-)/n(C_6H_8O_7)=4.5。  相似文献   

20.
在乙醇和乙二醇的混合溶剂中,用溶剂热法,150℃条件下,反应24h制备了YF3∶Yb3+/Er3+纳米晶(JCPDS号为74-0911),并一步制备出YF3∶Yb3+/Er3+@SDS纳米粒子.激发光源的波长980nm,YF3∶Yb3+/Er3+@SDS纳米晶有强的上转换发光,发射峰的位置为550nm,666nm 和833nm,分别对应Er3+离子的4S3/2→4I15/2,4F9/2→4I15/2和4S3/2-→4I13/2跃迁.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号