首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spectral analysis of phylogenetic data   总被引:12,自引:0,他引:12  
The spectral analysis of sequence and distance data is a new approach to phylogenetic analysis. For two-state character sequences, the character values at a given site split the set of taxa into two subsets, a bipartition of the taxa set. The vector which counts the relative numbers of each of these bipartitions over all sites is called a sequence spectrum. Applying a transformation called a Hadamard conjugation, the sequence spectrum is transformed to the conjugate spectrum. This conjugation corrects for unobserved changes in the data, independently from the choice of phylogenetic tree. For any given phylogenetic tree with edge weights (probabilities of state change), we define a corresponding tree spectrum. The selection of a weighted phylogenetic tree from the given sequence data is made by matching the conjugate spectrum with a tree spectrum. We develop an optimality selection procedure using a least squares best fit, to find the phylogenetic tree whose tree spectrum most closely matches the conjugate spectrum. An inferred sequence spectrum can be derived from the selected tree spectrum using the inverse Hadamard conjugation to allow a comparison with the original sequence spectrum. A possible adaptation for the analysis of four-state character sequences with unequal frequencies is considered. A corresponding spectral analysis for distance data is also introduced. These analyses are illustrated with biological examples for both distance and sequence data. Spectral analysis using the Fast Hadamard transform allows optimal trees to be found for at least 20 taxa and perhaps for up to 30 taxa. The development presented here is self contained, although some mathematical proofs available elsewhere have been omitted. The analysis of sequence data is based on methods reported earlier, but the terminology and the application to distance data are new.  相似文献   

2.
The nearest neighbor interchange (nni) metric is a distance measure providing a quantitative measure of dissimilarity between two unrooted binary trees with labeled leaves. The metric has a transparent definition in terms of a simple transformation of binary trees, but its use in nontrivial problems is usually prevented by the absence of a computationally efficient algorithm. Since recent attempts to discover such an algorithm continue to be unsuccessful, we address the complementary problem of designing an approximation to the nni metric. Such an approximation should be well-defined, efficient to compute, comprehensible to users, relevant to applications, and a close fit to the nni metric; the challenge, of course, is to compromise these objectives in such a way that the final design is acceptable to users with practical and theoretical orientations. We describe an approximation algorithm that appears to satisfy adequately these objectives. The algorithm requires O(n) space to compute dissimilarity between binary trees withn labeled leaves; it requires O(n logn) time for rooted trees and O(n 2 logn) time for unrooted trees. To help the user interpret the dissimilarity measures based on this algorithm, we describe empirical distributions of dissimilarities between pairs of randomly selected trees for both rooted and unrooted cases.The Natural Sciences and Engineering Research Council of Canada partially supported this work with Grant A-4142.  相似文献   

3.
O (n 4), where n is the number of objects. We describe the application of the MVR method to two data models: the weighted least-squares (WLS) model (V is diagonal), where the MVR method can be reduced to an O(n 3) time complexity; a model arising from the study of biological sequences, which involves a complex non-diagonal V matrix that is estimated from the dissimilarity matrix Δ. For both models, we provide simulation results that show a significant error reduction in the reconstruction of T, relative to classical agglomerative algorithms.  相似文献   

4.
Efficient algorithms for agglomerative hierarchical clustering methods   总被引:11,自引:4,他引:7  
Whenevern objects are characterized by a matrix of pairwise dissimilarities, they may be clustered by any of a number of sequential, agglomerative, hierarchical, nonoverlapping (SAHN) clustering methods. These SAHN clustering methods are defined by a paradigmatic algorithm that usually requires 0(n 3) time, in the worst case, to cluster the objects. An improved algorithm (Anderberg 1973), while still requiring 0(n 3) worst-case time, can reasonably be expected to exhibit 0(n 2) expected behavior. By contrast, we describe a SAHN clustering algorithm that requires 0(n 2 logn) time in the worst case. When SAHN clustering methods exhibit reasonable space distortion properties, further improvements are possible. We adapt a SAHN clustering algorithm, based on the efficient construction of nearest neighbor chains, to obtain a reasonably general SAHN clustering algorithm that requires in the worst case 0(n 2) time and space.Whenevern objects are characterized byk-tuples of real numbers, they may be clustered by any of a family of centroid SAHN clustering methods. These methods are based on a geometric model in which clusters are represented by points ink-dimensional real space and points being agglomerated are replaced by a single (centroid) point. For this model, we have solved a class of special packing problems involving point-symmetric convex objects and have exploited it to design an efficient centroid clustering algorithm. Specifically, we describe a centroid SAHN clustering algorithm that requires 0(n 2) time, in the worst case, for fixedk and for a family of dissimilarity measures including the Manhattan, Euclidean, Chebychev and all other Minkowski metrics.This work was partially supported by the Natural Sciences and Engineering Research Council of Canada and by the Austrian Fonds zur Förderung der wissenschaftlichen Forschung.  相似文献   

5.
n-Way Metrics     
We study a family of n-way metrics that generalize the usual two-way metric. The n-way metrics are totally symmetric maps from E n into \mathbbR \geqslant 0 {\mathbb{R}_{ \geqslant 0}} . The three-way metrics introduced by Joly and Le Calvé (1995) and Heiser and Bennani (1997) and the n-way metrics studied in Deza and Rosenberg (2000) belong to this family. It is shown how the n-way metrics and n-way distance measures are related to (n − 1)-way metrics, respectively, (n − 1)-way distance measures.  相似文献   

6.
Givenk rooted binary treesA 1, A2, ..., Ak, with labeled leaves, we generateC, a unique system of lineage constraints on common ancestors. We then present an algorithm for constructing the set of rooted binary treesB, compatible with all ofA 1, A2, ..., Ak. The running time to obtain one such supertree isO(k 2 n2), wheren is the number of distinct leaves in all of the treesA 1, A2, ..., Ak.  相似文献   

7.
Clustering with a criterion which minimizes the sum of squared distances to cluster centroids is usually done in a heuristic way. An exact polynomial algorithm, with a complexity in O(N p+1 logN), is proposed for minimum sum of squares hierarchical divisive clustering of points in a p-dimensional space with small p. Empirical complexity is one order of magnitude lower. Data sets with N = 20000 for p = 2, N = 1000 for p = 3, and N = 200 for p = 4 are clustered in a reasonable computing time.  相似文献   

8.
On some significance tests in cluster analysis   总被引:1,自引:1,他引:0  
We investigate the properties of several significance tests for distinguishing between the hypothesisH of a homogeneous population and an alternativeA involving clustering or heterogeneity, with emphasis on the case of multidimensional observationsx 1, ...,x n p . Four types of test statistics are considered: the (s-th) largest gap between observations, their mean distance (or similarity), the minimum within-cluster sum of squares resulting from a k-means algorithm, and the resulting maximum F statistic. The asymptotic distributions underH are given forn and the asymptotic power of the tests is derived for neighboring alternatives.  相似文献   

9.
Optimal algorithms for comparing trees with labeled leaves   总被引:2,自引:1,他引:1  
LetR n denote the set of rooted trees withn leaves in which: the leaves are labeled by the integers in {1, ...,n}; and among interior vertices only the root may have degree two. Associated with each interior vertexv in such a tree is the subset, orcluster, of leaf labels in the subtree rooted atv. Cluster {1, ...,n} is calledtrivial. Clusters are used in quantitative measures of similarity, dissimilarity and consensus among trees. For anyk trees inR n , thestrict consensus tree C(T 1, ...,T k ) is that tree inR n containing exactly those clusters common to every one of thek trees. Similarity between treesT 1 andT 2 inR n is measured by the numberS(T 1,T 2) of nontrivial clusters in bothT 1 andT 2; dissimilarity, by the numberD(T 1,T 2) of clusters inT 1 orT 2 but not in both. Algorithms are known to computeC(T 1, ...,T k ) inO(kn 2) time, andS(T 1,T 2) andD(T 1,T 2) inO(n 2) time. I propose a special representation of the clusters of any treeT R n , one that permits testing in constant time whether a given cluster exists inT. I describe algorithms that exploit this representation to computeC(T 1, ...,T k ) inO(kn) time, andS(T 1,T 2) andD(T 1,T 2) inO(n) time. These algorithms are optimal in a technical sense. They enable well-known indices of consensus between two trees to be computed inO(n) time. All these results apply as well to comparable problems involving unrooted trees with labeled leaves.The Natural Sciences and Engineering Research Council of Canada partially supported this work with grant A-4142.  相似文献   

10.
Assouad has shown that a real-valued distance d = (dij)1 ≤ i < j ≤ n is isometrically embeddable in ℓ1space if and only if it belongs to the cut cone on n points. Determining if this condition holds is NP-complete. We use Assouad's result in a constructive column generation algorithm for ℓ1-embeddability. The subproblem is an unconstrained 0-1 quadratic program, solved by Tabu Search and Variable Neighborhood Search heuristics as well as by an exact enumerative algorithm. Computational results are reported. Several ways to approximate a distance which is not ℓ1-embeddable by another one which is are also studied.  相似文献   

11.
We present an O(n 3)-time, O(n 2)-space algorithm to test whether a dissimilarity d on an n-object set X is Robinsonian, i.e., X admits an ordering such that i≤j≤k implies that d(x i,xk)≥max {d(xi,xj),d(xj,xk)}.  相似文献   

12.
A two-level data set consists of entities of a higher level (say populations), each one being composed of several units of the lower level (say individuals). Observations are made at the individual level, whereas population characteristics are aggregated from individual data. Cluster analysis with subsampling of populations is a cluster analysis based on individual data that aims at clustering populations rather than individuals. In this article, we extend existing optimality criteria for cluster analysis with subsampling of populations to deal with situations where population characteristics are not the mean of individual data. A new criterion that depends on the Mahalanobis distance is also defined. The criteria are compared using simulated examples and an ecological data set of tree species in a tropical rain forest.  相似文献   

13.
The set of k points that optimally represent a distribution in terms of mean squared error have been called principal points (Flury 1990). Principal points are a special case of self-consistent points. Any given set of k distinct points in R p induce a partition of R p into Voronoi regions or domains of attraction according to minimal distance. A set of k points are called self-consistent for a distribution if each point equals the conditional mean of the distribution over its respective Voronoi region. For symmetric multivariate distributions, sets of self-consistent points typically form symmetric patterns. This paper investigates the optimality of different symmetric patterns of self-consistent points for symmetric multivariate distributions and in particular for the bivariate normal distribution. These results are applied to the problem of estimating principal points.  相似文献   

14.
15.
In agglomerative hierarchical clustering, pair-group methods suffer from a problem of non-uniqueness when two or more distances between different clusters coincide during the amalgamation process. The traditional approach for solving this drawback has been to take any arbitrary criterion in order to break ties between distances, which results in different hierarchical classifications depending on the criterion followed. In this article we propose a variable-group algorithm that consists in grouping more than two clusters at the same time when ties occur. We give a tree representation for the results of the algorithm, which we call a multidendrogram, as well as a generalization of the Lance andWilliams’ formula which enables the implementation of the algorithm in a recursive way. The authors thank A. Arenas for discussion and helpful comments. This work was partially supported by DGES of the Spanish Government Project No. FIS2006–13321–C02–02 and by a grant of Universitat Rovira i Virgili.  相似文献   

16.
Two algorithms for pyramidal classification — a generalization of hierarchical classification — are presented that can work with incomplete dissimilarity data. These approaches — a modification of the pyramidal ascending classification algorithm and a least squares based penalty method — are described and compared using two different types of complete dissimilarity data in which randomly chosen dissimilarities are assumed missing and the non-missing ones are subjected to random error. We also consider relationships between hierarchical classification and pyramidal classification solutions when both are based on incomplete dissimilarity data.  相似文献   

17.
A validation study of a variable weighting algorithm for cluster analysis   总被引:1,自引:0,他引:1  
De Soete (1986, 1988) proposed a variable weighting procedure when Euclidean distance is used as the dissimilarity measure with an ultrametric hierarchical clustering method. The algorithm produces weighted distances which approximate ultrametric distances as closely as possible in a least squares sense. The present simulation study examined the effectiveness of the De Soete procedure for an applications problem for which it was not originally intended. That is, to determine whether or not the algorithm can be used to reduce the influence of variables which are irrelevant to the clustering present in the data. The simulation study examined the ability of the procedure to recover a variety of known underlying cluster structures. The results indicate that the algorithm is effective in identifying extraneous variables which do not contribute information about the true cluster structure. Weights near 0.0 were typically assigned to such extraneous variables. Furthermore, the variable weighting procedure was not adversely effected by the presence of other forms of error in the data. In general, it is recommended that the variable weighting procedure be used for applied analyses when Euclidean distance is employed with ultrametric hierarchical clustering methods.  相似文献   

18.
The additive biclustering model for two-way two-mode object by variable data implies overlapping clusterings of both the objects and the variables together with a weight for each bicluster (i.e., a pair of an object and a variable cluster). In the data analysis, an additive biclustering model is fitted to given data by means of minimizing a least squares loss function. To this end, two alternating least squares algorithms (ALS) may be used: (1) PENCLUS, and (2) Baier’s ALS approach. However, both algorithms suffer from some inherent limitations, which may hamper their performance. As a way out, based on theoretical results regarding optimally designing ALS algorithms, in this paper a new ALS algorithm will be presented. In a simulation study this algorithm will be shown to outperform the existing ALS approaches.  相似文献   

19.
Given a set of objects and a symmetric matrix of dissimilarities between them, Unidimensional Scaling is the problem of finding a representation by locating points on a continuum. Approximating dissimilarities by the absolute value of the difference between coordinates on a line constitutes a serious computational problem. This paper presents an algorithm that implements Simulated Annealing in a new way, via a strategy based on a weighted alternating process that uses permutations and point-wise translations to locate the optimal configuration. Explicit implementation details are given for least squares loss functions and for least absolute deviations. The weighted, alternating process is shown to outperform earlier implementations of Simulated Annealing and other optimization strategies for Unidimensional Scaling in run time efficiency, in solution quality, or in both.  相似文献   

20.
The theory of the tight span, a cell complex that can be associated to every metric D, offers a unifying view on existing approaches for analyzing distance data, in particular for decomposing a metric D into a sum of simpler metrics as well as for representing it by certain specific edge-weighted graphs, often referred to as realizations of D. Many of these approaches involve the explicit or implicit computation of the so-called cutpoints of (the tight span of) D, such as the algorithm for computing the “building blocks” of optimal realizations of D recently presented by A. Hertz and S. Varone. The main result of this paper is an algorithm for computing the set of these cutpoints for a metric D on a finite set with n elements in O(n3) time. As a direct consequence, this improves the run time of the aforementioned O(n6)-algorithm by Hertz and Varone by “three orders of magnitude”.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号