首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Duchenne muscular dystrophy gene product is not identical in muscle and brain   总被引:30,自引:0,他引:30  
U Nudel  D Zuk  P Einat  E Zeelon  Z Levy  S Neuman  D Yaffe 《Nature》1989,337(6202):76-78
  相似文献   

2.
Duchenne muscular dystrophy (DMD) and its milder form, Becker muscular dystrophy (BMD), are allelic X-linked muscle disorders in man. The gene responsible for the disease has been cloned from knowledge of its map location at band Xp21 on the short arm of the X chromosome. The product of the DMD gene, a protein of relative molecular mass 400,000 (Mr 400K) recently named dystrophin, has been reported to co-purify with triads of mouse and rabbit skeletal muscle when assayed using polyclonal antibodies raised against fusion proteins encoded by regions of mouse DMD complementary DNA. Here we show that antibodies directed against synthetic peptides and fusion proteins derived from the N-terminal region of human DMD cDNA strongly react with an antigen present in skeletal muscle sarcolemma on cryostat sections of normal human muscle biopsies. This immunoreactivity is reduced or absent in muscle fibres from DMD patients but appears normal in muscle fibres from patients with other myopathic diseases. The same antibodies specifically react with a 400K protein in sodium dodecyl sulphate (SDS) extracts of normal human muscle subjected to Western blot analysis. We conclude that the product of the DMD gene is associated with the sarcolemma rather than with the triads and speculate that it strengthens the sarcolemma by anchoring elements of the internal cytoskeleton to the surface membrane.  相似文献   

3.
Duchenne muscular dystrophy (DMD) is a debilitating X-linked muscle disease. We have used sequence information from complementary DNA clones, derived from the gene that is deleted in DMD patients, to generate an antiserum that stains the surface membrane of intact human and mouse skeletal muscle, but not that of DMD patients and mdx mice. Here we identify the protein reacting with this antiserum as a single component of relative molecular mass 210,000 (Mr = 210K) that fractionates with a low-ionic strength extract of intact human and mouse skeletal muscle. It is therefore distinct from the 400 K protein found in the heavy microsomal fraction of normal muscle and identified as a putative product of the DMD gene. We also analyse further the disease specificity of the antiserum. Positive staining is seen in normal controls, and in samples from patients with a wide range of muscular dystrophies other than DMD. Becker muscular dystrophy, which is allelically related to DMD, was the only other exception, and gave a sporadic staining pattern. The demonstration of a specific defect in the surface membrane of DMD muscle fibres substantiates the hypothesis that membrane lesions may initiate muscle degradation in DMD.  相似文献   

4.
5.
R Heilig  C Lemaire  J L Mandel  L Dandolo  L Amar  P Avner 《Nature》1987,328(6126):168-170
Recent progress has resulted in part of the gene mutated in Duchenne and the milder Becker muscular dystrophies being cloned and has suggested that the gene itself extends over 1,000 to 2,000 kilobases (kb). To study how mutations in this gene affect muscle development and integrity, it would be of interest to have available a mouse model of the human disease. The mouse mdx mutation affects muscle and confers a mild dystrophic syndrome, but it is not clear whether this mutation is equivalent to Duchenne/Becker muscular dystrophy in man. Here we describe the use of two sequences from the human Duchenne muscular dystrophy (DMD) gene that cross-hybridize to mouse X-linked sequences to localize the gene homologous to DMD in the mouse. Both sequences map to the region of 10 centimorgan lying between the Tabby (Ta) and St14-1 (DxPas8) loci, close to the phosphorylase b kinase locus (Phk). By analogy with the human X-chromosome, we conclude that the region in the mouse around the G6pd and St14-1 loci may contain two genes corresponding to distinct human myopathies: Emery Dreifuss muscular dystrophy which is known to be closely linked to St14-1 in man and the DMD homologue described here.  相似文献   

6.
7.
Duchenne's muscular dystrophy (DMD), which affects one in 3,500 males, causes progressive myopathy of skeletal and cardiac muscles and premature death. One approach to treatment would be to introduce the normal dystrophin gene into diseased muscle cells. When pure plasmid DNA is injected into rodent skeletal or cardiac muscle, the cells express reporter genes. We now show that a 12-kilobase full-length human dystrophin complementary DNA gene and a 6.3-kilobase Becker-like gene can be expressed in cultured cells and in vivo. When the human dystrophin expression plasmids are injected intramuscularly into dystrophin-deficient mdx mice, the human dystrophin proteins are present in the cytoplasm and sarcolemma of approximately 1% of the myofibres. Myofibres expressing human dystrophin contain an increased proportion of peripheral nuclei. The results indicate that transfer of the dystrophin gene into the myofibres of DMD patients could be beneficial, but a larger number of genetically modified myofibres will be necessary for clinical efficacy.  相似文献   

8.
Duchenne's muscular dystrophy (DMD) is an X-linked progressive myopathy caused by a defect in the DMD gene locus. The gene corresponding to the DMD locus produces a 14-kilobase (kb) messenger RNA that codes for a large cytoskeletal membrane protein, dystrophin. DMD and Becker's muscular dystrophy are the consequences of dystrophin mutations. The exact biological function of dystrophin remains unknown but it has been demonstrated that it is localized to the cytoplasmic face of the cell membrane and has direct interaction with several other membrane proteins. We report here the synthesis of a 14-kb full-length complementary DNA for the mouse muscle dystrophin mRNA and the expression of this cDNA in COS cells. The recombinant dystrophin is indistinguishable from mouse muscle dystrophin by western blot analysis with anti-dystrophin antibodies and was shown by an immunofluorescent technique to be localized in the cell membrane. Our successful construction of a functional full-length cDNA opens opportunities for the study of structure and function of dystrophin and provides an opportunity to initiate gene therapy studies.  相似文献   

9.
Functional improvement of dystrophic muscle by myostatin blockade   总被引:42,自引:0,他引:42  
Mice and cattle with mutations in the myostatin (GDF8) gene show a marked increase in body weight and muscle mass, indicating that this new member of the TGF-beta superfamily is a negative regulator of skeletal muscle growth. Inhibition of the myostatin gene product is predicted to increase muscle mass and improve the disease phenotype in a variety of primary and secondary myopathies. We tested the ability of inhibition of myostatin in vivo to ameliorate the dystrophic phenotype in the mdx mouse model of Duchenne muscular dystrophy (DMD). Blockade of endogenous myostatin by using intraperitoneal injections of blocking antibodies for three months resulted in an increase in body weight, muscle mass, muscle size and absolute muscle strength in mdx mouse muscle along with a significant decrease in muscle degeneration and concentrations of serum creatine kinase. The functional improvement of dystrophic muscle by myostatin blockade provides a novel, pharmacological strategy for treatment of diseases associated with muscle wasting such as DMD, and circumvents the major problems associated with conventional gene therapy in these disorders.  相似文献   

10.
A cDNA clone from the Duchenne/Becker muscular dystrophy gene   总被引:8,自引:0,他引:8  
A H Burghes  C Logan  X Hu  B Belfall  R G Worton  P N Ray 《Nature》1987,328(6129):434-437
  相似文献   

11.
Duchenne muscular dystrophy (DMD) is a severe and progressive muscle wasting disorder caused by mutations in the dystrophin gene that result in the absence of the membrane-stabilizing protein dystrophin. Dystrophin-deficient muscle fibres are fragile and susceptible to an influx of Ca(2+), which activates inflammatory and muscle degenerative pathways. At present there is no cure for DMD, and existing therapies are ineffective. Here we show that increasing the expression of intramuscular heat shock protein 72 (Hsp72) preserves muscle strength and ameliorates the dystrophic pathology in two mouse models of muscular dystrophy. Treatment with BGP-15 (a pharmacological inducer of Hsp72 currently in clinical trials for diabetes) improved muscle architecture, strength and contractile function in severely affected diaphragm muscles in mdx dystrophic mice. In dko mice, a phenocopy of DMD that results in severe spinal curvature (kyphosis), muscle weakness and premature death, BGP-15 decreased kyphosis, improved the dystrophic pathophysiology in limb and diaphragm muscles and extended lifespan. We found that the sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA, the main protein responsible for the removal of intracellular Ca(2+)) is dysfunctional in severely affected muscles of mdx and dko mice, and that Hsp72 interacts with SERCA to preserve its function under conditions of stress, ultimately contributing to the decreased muscle degeneration seen with Hsp72 upregulation. Treatment with BGP-15 similarly increased SERCA activity in dystrophic skeletal muscles. Our results provide evidence that increasing the expression of Hsp72 in muscle (through the administration of BGP-15) has significant therapeutic potential for DMD and related conditions, either as a self-contained therapy or as an adjuvant with other potential treatments, including gene, cell and pharmacological therapies.  相似文献   

12.
The recent discovery of sequences at the site of the Duchenne muscular dystrophy (DMD) gene in humans has opened up the possibility of a detailed molecular analysis of the genes in humans and in related mammalian species. Until relatively recently, there was no obvious mouse model of this genetic disease for the development of therapeutic strategies. The identification of a mouse X-linked mutant showing muscular dystrophy, mdx, has provided a candidate mouse genetic homologue to the DMD locus; the relatively mild pathological features of mdx suggest it may have more in common with mutations of the Becker muscular dystrophy type at the same human locus, however. But the close genetic linkage of mdx to G6PD and Hprt on the mouse X chromosome, coupled with its comparatively mild pathology, have suggested that the mdx mutation may instead correspond to Emery Dreifuss muscular dystrophy which itself is closely linked to DNA markers at Xq28-qter in the region of G6PD on the human X chromosome. Using an interspecific mouse domesticus/spretus cross, segregating for a variety of markers on the mouse X chromosome, we have positioned on the mouse X chromosome sequences homologous to a DMD cDNA clone. These sequences map provocatively close to the mdx mutation and unexpectedly distant from sparse fur, spf, the mouse homologue of OTC (ornithine transcarbamylase) which is closely linked to DMD on the human X chromosome.  相似文献   

13.
Duchenne muscular dystrophy (DMD) is a fatal genetic disease for the youth and children. 8 biopsies of DMD patients were determined and demonstrated that the membrane_binding nitric oxide synthase was enriched in normal skeletal muscles and was little in DMD muscles. The results from Western blot and immunohistochemistry showed that inducible nitric oxide synthase (iNOS) was overexpressed in DMD muscle fibers, while a small amount of highly localized iNOS can be found in normal fibers. Based on these findings, it is proposed that the mechanism of progressive injury in DMD muscle might be associated with the abnormal expression of iNOS.  相似文献   

14.
Duchenne muscular dystrophy (DMD), the most common and severe form of the muscular dystrophies, is an X-linked inborn error of metabolism with multiple tissue involvement. Although the major pathological changes are observed in skeletal muscle, abnormalities have also been detected in the heart, nervous system, red blood cells, lymphocytes and cultured skin fibroblasts. For many reasons, such as readily available tissue material, fewer secondary changes and the potential for prenatal diagnosis, cultured skin fibroblasts should be the tissue of choice to search for the primary defect. Several abnormalities have been reported in DMD fibroblasts, suggesting that the genetic abnormality is expressed in these cells. To search for potentially mutant protein(s) we have compared the protein composition of normal and DMD fibroblasts by two-dimensional gel electrophoresis and have now found one protein spot consistently missing in DMD cells. The nature of this protein and its relation to the DMD gene are unknown.  相似文献   

15.
Defective membrane repair in dysferlin-deficient muscular dystrophy   总被引:35,自引:0,他引:35  
Muscular dystrophy includes a diverse group of inherited muscle diseases characterized by wasting and weakness of skeletal muscle. Mutations in dysferlin are linked to two clinically distinct muscle diseases, limb-girdle muscular dystrophy type 2B and Miyoshi myopathy, but the mechanism that leads to muscle degeneration is unknown. Dysferlin is a homologue of the Caenorhabditis elegans fer-1 gene, which mediates vesicle fusion to the plasma membrane in spermatids. Here we show that dysferlin-null mice maintain a functional dystrophin-glycoprotein complex but nevertheless develop a progressive muscular dystrophy. In normal muscle, membrane patches enriched in dysferlin can be detected in response to sarcolemma injuries. In contrast, there are sub-sarcolemmal accumulations of vesicles in dysferlin-null muscle. Membrane repair assays with a two-photon laser-scanning microscope demonstrated that wild-type muscle fibres efficiently reseal their sarcolemma in the presence of Ca2+. Interestingly, dysferlin-deficient muscle fibres are defective in Ca2+-dependent sarcolemma resealing. Membrane repair is therefore an active process in skeletal muscle fibres, and dysferlin has an essential role in this process. Our findings show that disruption of the muscle membrane repair machinery is responsible for dysferlin-deficient muscle degeneration, and highlight the importance of this basic cellular mechanism of membrane resealing in human disease.  相似文献   

16.
17.
Association of dystrophin and an integral membrane glycoprotein   总被引:56,自引:0,他引:56  
K P Campbell  S D Kahl 《Nature》1989,338(6212):259-262
Duchenne muscular dystrophy (DMD) is caused by a defective gene found on the X-chromosome. Dystrophin is encoded by the DMD gene and represents about 0.002% of total muscle protein. Immunochemical studies have shown that dystrophin is localized to the sarcolemma in normal muscle but is absent in muscle from DMD patients. Many features of the predicted primary structure of dystrophin are shared with membrane cytoskeletal proteins, but the precise function of dystrophin in muscle is unknown. Here we report the first isolation of dystrophin from digitonin-solubilized skeletal muscle membranes using wheat germ agglutinin (WGA)-Sepharose. We find that dystrophin is not a glycoprotein but binds to WGA-Sepharose because of its tight association with a WGA-binding glycoprotein. The association of dystrophin with this glycoprotein is disrupted by agents that dissociate cytoskeletal proteins from membranes. We conclude that dystrophin is linked to an integral membrane glycoprotein in the sarcolemma. Our results indicate that the function of dystrophin could be to link this glycoprotein to the underlying cytoskeleton and thus help either to preserve membrane stability or to keep the glycoprotein non-uniformly distributed in the sarcolemma.  相似文献   

18.
Yasuda S  Townsend D  Michele DE  Favre EG  Day SM  Metzger JM 《Nature》2005,436(7053):1025-1029
Dystrophin deficiency causes Duchenne muscular dystrophy (DMD) in humans, an inherited and progressive disease of striated muscle deterioration that frequently involves pronounced cardiomyopathy. Heart failure is the second leading cause of fatalities in DMD. Progress towards defining the molecular basis of disease in DMD has mostly come from studies on skeletal muscle, with comparatively little attention directed to cardiac muscle. The pathophysiological mechanisms involved in cardiac myocytes may differ significantly from skeletal myofibres; this is underscored by the presence of significant cardiac disease in patients with truncated or reduced levels of dystrophin but without skeletal muscle disease. Here we show that intact, isolated dystrophin-deficient cardiac myocytes have reduced compliance and increased susceptibility to stretch-mediated calcium overload, leading to cell contracture and death, and that application of the membrane sealant poloxamer 188 corrects these defects in vitro. In vivo administration of poloxamer 188 to dystrophic mice instantly improved ventricular geometry and blocked the development of acute cardiac failure during a dobutamine-mediated stress protocol. Once issues relating to optimal dosing and long-term effects of poloxamer 188 in humans have been resolved, chemical-based membrane sealants could represent a new therapeutic approach for preventing or reversing the progression of cardiomyopathy and heart failure in muscular dystrophy.  相似文献   

19.
20.
H G Lidov  T J Byers  S C Watkins  L M Kunkel 《Nature》1990,348(6303):725-728
Moderate non-progressive cognitive impairment is a consistent feature of Duchenne muscular dystrophy (DMD), although no central nervous system (CNS) abnormality has been identified. Recent studies have elucidated the molecular defect in DMD, including the absence of the protein dystrophin in affected individuals. Normal brain tissue contains dystrophin messenger RNA and dystrophin is present in low abundance in the brain and seems to be regulated in this tissue, at least in part, by a promoter that differs from that in muscle. Until now, antibodies and immunocytochemical methods used to demonstrate dystrophin at the plasma membrane of mouse and human muscle have proven inadequate to localize precisely dystrophin in the mammalian CNS. We have now made an antibody (anti 6-10) which is much more sensitive than those previously available to immunolabel dystrophin in the CNS. Using this antibody, we found that in the mouse, dystrophin is particularly abundant in the neurons of the cerebral and cerebellar cortices, and that it is localized at postsynaptic membrane specializations. Dystrophin may have a different role in neurons than in muscle, and an alteration at the synaptic level may be the basis of the cognitive impairment in DMD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号