首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epilepsies affect at least 2% of the population at some time in life, and many forms have genetic determinants. We have found a mutation in a gene encoding a GABA(A) receptor subunit in a large family with epilepsy. The two main phenotypes were childhood absence epilepsy (CAE) and febrile seizures (FS). There is a recognized genetic relationship between FS and CAE, yet the two syndromes have different ages of onset, and the physiology of absences and convulsions is distinct. This suggests the mutation has age-dependent effects on different neuronal networks that influence the expression of these clinically distinct, but genetically related, epilepsy phenotypes. We found that the mutation in GABRG2 (encoding the gamma2-subunit) abolished in vitro sensitivity to diazepam, raising the possibility that endozepines do in fact exist and have a physiological role in preventing seizures.  相似文献   

2.
Hypertonia, which results from motor pathway defects in the central nervous system (CNS), is observed in numerous neurological conditions, including cerebral palsy, stroke, spinal cord injury, stiff-person syndrome, spastic paraplegia, dystonia and Parkinson disease. Mice with mutation in the hypertonic (hyrt) gene exhibit severe hypertonia as their primary symptom. Here we show that hyrt mutant mice have much lower levels of gamma-aminobutyric acid type A (GABA(A)) receptors in their CNS, particularly the lower motor neurons, than do wild-type mice, indicating that the hypertonicity of the mutants is likely to be caused by deficits in GABA-mediated motor neuron inhibition. We cloned the responsible gene, trafficking protein, kinesin binding 1 (Trak1), and showed that its protein product interacts with GABA(A) receptors. Our data implicate Trak1 as a crucial regulator of GABA(A) receptor homeostasis and underscore the importance of hyrt mice as a model for studying the molecular etiology of hypertonia associated with human neurological diseases.  相似文献   

3.
The murine Elo (eye lens obsolescence) mutation confers a dominant phenotype characterized by malformation of the eye lens. The mutation maps to chromosome 1, in close proximity to the gamma E-crystallin gene which is the 3'-most member of the gamma-crystallin gene cluster. We have analysed the sequence of this gene from the Elo mouse and identified a single nucleotide deletion which destroys the fourth and last "Greek key" motif of the protein. This mutation is tightly associated with the phenotype, as no recombination was detected in 274 meioses. In addition, the mutant mRNA is present in the affected lens, providing further support for our hypothesis that the deletion is responsible for the dominant Elo phenotype.  相似文献   

4.
Mutations within the rhodopsin gene are known to give rise to autosomal dominant retinitis pigmentosa (RP), a common hereditary form of retinal degeneration. We now describe a patient with autosomal recessive RP who is homozygous for a nonsense mutation at codon 249 within exon 4 of the rhodopsin gene. This null mutation, the first gene defect identified in autosomal recessive retinitis pigmentosa, should result in a functionally inactive rhodopsin protein that is missing the sixth and seventh transmembrane domains including the 11-cis-retinal attachment site. We also found a different null mutation carried heterozygously by an unrelated unaffected individual. Heterozygous carriers of either mutation had normal ophthalmologic examinations but their electroretinograms revealed an abnormality in rod photoreceptor function.  相似文献   

5.
6.
Nephrogenic diabetes insipidus (DIR) is an X-linked disorder characterized by insensitivity of the distal nephron for the pituitary hormone, vasopressin. The genetic map location of the DIR gene on chromosome Xq28 coincides with the physical map location of the functional vasopressin renal V2-type receptor. Recently, the human and rat cDNAs for the vasopressin V2 receptor (AVPR2) have been identified. We show here that the structural AVPR2 gene is localized between DXS52 and G6PD, which is within the genetic map location of DIR. We also tested eight X-linked DIR probands and their families for mutations in one of the most conserved extracellular regions of AVPR2: in three of them, we have identified point mutations resulting in non-conservative amino acid substitutions which cosegregated with DIR in all families.  相似文献   

7.
Breast cancer in men is rare--among the risk factors that have been identified are a family history of breast cancer and evidence of androgen insufficiency. We report a family in which two brothers who both developed breast cancer had clinical and endocrinological evidence of androgen resistance. Sequence analysis revealed a mutation in the androgen receptor gene on the X chromosome, within the region encoding the DNA binding domain. This is the first report of a germline mutation in a member of the steroid/thyroid hormone receptor superfamily associated with the development of cancer.  相似文献   

8.
Hyperekplexia is a human neurological disorder characterized by an excessive startle response and is typically caused by missense and nonsense mutations in the gene encoding the inhibitory glycine receptor (GlyR) alpha1 subunit (GLRA1). Genetic heterogeneity has been confirmed in rare sporadic cases, with mutations affecting other postsynaptic glycinergic proteins including the GlyR beta subunit (GLRB), gephyrin (GPHN) and RhoGEF collybistin (ARHGEF9). However, many individuals diagnosed with sporadic hyperekplexia do not carry mutations in these genes. Here we show that missense, nonsense and frameshift mutations in SLC6A5 (ref. 8), encoding the presynaptic glycine transporter 2 (GlyT2), also cause hyperekplexia. Individuals with mutations in SLC6A5 present with hypertonia, an exaggerated startle response to tactile or acoustic stimuli, and life-threatening neonatal apnea episodes. SLC6A5 mutations result in defective subcellular GlyT2 localization, decreased glycine uptake or both, with selected mutations affecting predicted glycine and Na+ binding sites.  相似文献   

9.
Hallervorden-Spatz syndrome (HSS) is an autosomal recessive neurodegenerative disorder associated with iron accumulation in the brain. Clinical features include extrapyramidal dysfunction, onset in childhood, and a relentlessly progressive course. Histologic study reveals iron deposits in the basal ganglia. In this respect, HSS may serve as a model for complex neurodegenerative diseases, such as Parkinson disease, Alzheimer disease, Huntington disease and human immunodeficiency virus (HIV) encephalopathy, in which pathologic accumulation of iron in the brain is also observed. Thus, understanding the biochemical defect in HSS may provide key insights into the regulation of iron metabolism and its perturbation in this and other neurodegenerative diseases. Here we show that HSS is caused by a defect in a novel pantothenate kinase gene and propose a mechanism for oxidative stress in the pathophysiology of the disease.  相似文献   

10.
11.
Texel sheep are renowned for their exceptional meatiness. To identify the genes underlying this economically important feature, we performed a whole-genome scan in a Romanov x Texel F2 population. We mapped a quantitative trait locus with a major effect on muscle mass to chromosome 2 and subsequently fine-mapped it to a chromosome interval encompassing the myostatin (GDF8) gene. We herein demonstrate that the GDF8 allele of Texel sheep is characterized by a G to A transition in the 3' UTR that creates a target site for mir1 and mir206, microRNAs (miRNAs) that are highly expressed in skeletal muscle. This causes translational inhibition of the myostatin gene and hence contributes to the muscular hypertrophy of Texel sheep. Analysis of SNP databases for humans and mice demonstrates that mutations creating or destroying putative miRNA target sites are abundant and might be important effectors of phenotypic variation.  相似文献   

12.
The inherited osteolyses or 'vanishing bone' syndromes are a group of rare disorders of unknown etiology characterized by destruction and resorption of affected bones. The multicentric osteolyses are notable for interphalangeal joint erosions that mimic severe juvenile rheumatoid arthritis (OMIMs 166300, 259600, 259610 and 277950). We recently described an autosomal recessive form of multicentric osteolysis with carpal and tarsal resorption, crippling arthritic changes, marked osteoporosis, palmar and plantar subcutaneous nodules and distinctive facies in a number of consanguineous Saudi Arabian families. We localized the disease gene to 16q12-21 by using members of these families for a genome-wide search for homozygous-by-descent microsatellite markers. Haplotype analysis narrowed the critical region to a 1.2-cM region that spans the gene encoding MMP-2 (gelatinase A, collagenase type IV; (ref. 3). We detected no MMP2 enzymatic activity in the serum or fibroblasts of affected family members. We identified two family-specific homoallelic MMP2 mutations: R101H and Y244X. The nonsense mutation effects a deletion of the substrate-binding and catalytic sites and the fibronectin type II-like and hemopexin/TIMP2 binding domains. Based on molecular modeling, the missense mutation disrupts hydrogen bond formation within the highly conserved prodomain adjacent to the catalytic zinc ion.  相似文献   

13.
Stratifin (Sfn, also called 14-3-3sigma) is highly expressed in differentiating epidermis and mediates cell cycle arrest. Sfn is repressed in cancer, but its function during development is uncharacterized. We identified an insertion mutation in the gene Sfn in repeated epilation (Er) mutant mice by positional cloning. Er/+ mice expressed a truncated Sfn protein, which probably contributes to the defects in Er/Er and Er/+ epidermis and to cancer development in Er/+ mice.  相似文献   

14.
15.
Péterfy M  Phan J  Xu P  Reue K 《Nature genetics》2001,27(1):121-124
Mice carrying mutations in the fatty liver dystrophy (fld) gene have features of human lipodystrophy, a genetically heterogeneous group of disorders characterized by loss of body fat, fatty liver, hypertriglyceridemia and insulin resistance. Through positional cloning, we have isolated the gene responsible and characterized two independent mutant alleles, fld and fld(2J). The gene (Lpin1) encodes a novel nuclear protein which we have named lipin. Consistent with the observed reduction of adipose tissue mass in fld and fld(2J)mice, wild-type Lpin1 mRNA is expressed at high levels in adipose tissue and is induced during differentiation of 3T3-L1 pre-adipocytes. Our results indicate that lipin is required for normal adipose tissue development, and provide a candidate gene for human lipodystrophy. Lipin defines a novel family of nuclear proteins containing at least three members in mammalian species, and homologs in distantly related organisms from human to yeast.  相似文献   

16.
Hereditary diffuse leukoencephalopathy with spheroids (HDLS) is an autosomal-dominant central nervous system white-matter disease with variable clinical presentations, including personality and behavioral changes, dementia, depression, parkinsonism, seizures and other phenotypes. We combined genome-wide linkage analysis with exome sequencing and identified 14 different mutations affecting the tyrosine kinase domain of the colony stimulating factor 1 receptor (encoded by CSF1R) in 14 families with HDLS. In one kindred, we confirmed the de novo occurrence of the mutation. Follow-up sequencing identified an additional CSF1R mutation in an individual diagnosed with corticobasal syndrome. In vitro, CSF-1 stimulation resulted in rapid autophosphorylation of selected tyrosine residues in the kinase domain of wild-type but not mutant CSF1R, suggesting that HDLS may result from partial loss of CSF1R function. As CSF1R is a crucial mediator of microglial proliferation and differentiation in the brain, our findings suggest an important role for microglial dysfunction in HDLS pathogenesis.  相似文献   

17.
18.
Juvenile polyposis (JP; OMIM 174900) is an autosomal dominant gastrointestinal hamartomatous polyposis syndrome in which patients are at risk for developing gastrointestinal cancers. Previous studies have demonstrated a locus for JP mapping to 18q21.1 (ref. 3) and germline mutations in the homolog of the gene for mothers against decapentaplegic, Drosophila, (MADH4, also known as SMAD4) in several JP families. However, mutations in MADH4 are only present in a subset of JP cases, and although mutations in the gene for phosphatase and tensin homolog (PTEN) have been described in a few families, undefined genetic heterogeneity remains. Using a genome-wide screen in four JP kindreds without germline mutations in MADH4 or PTEN, we identified linkage with markers from chromosome 10q22-23 (maximum lod score of 4.74, straight theta=0.00). We found no recombinants using markers developed from the vicinity of the gene for bone morphogenetic protein receptor 1A (BMPR1A), a serine-threonine kinase type I receptor involved in bone morphogenetic protein (BMP) signaling. Genomic sequencing of BMPR1A in each of these JP kindreds disclosed germline nonsense mutations in all affected kindred members but not in normal control individuals. These findings indicate involvement of an additional gene in the transforming growth factor-beta (TGF-beta) superfamily in the genesis of JP, and document an unanticipated function for BMP in colonic epithelial growth control.  相似文献   

19.
20.
Seckel syndrome (OMIM 210600) is an autosomal recessive disorder characterized by intrauterine growth retardation, dwarfism, microcephaly and mental retardation. Clinically, Seckel syndrome shares features in common with disorders involving impaired DNA-damage responses, such as Nijmegen breakage syndrome (OMIM 251260) and LIG4 syndrome (OMIM 606593). We previously mapped a locus associated with Seckel syndrome to chromosome 3q22.1-q24 in two consanguineous Pakistani families. Further marker analysis in the families, including a recently born unaffected child with a recombination in the critical region, narrowed the region to an interval of 5 Mbp between markers D3S1316 and D3S1557 (145.29 Mbp and 150.37 Mbp). The gene encoding ataxia-telangiectasia and Rad3-related protein (ATR) maps to this region. A fibroblast cell line derived from an affected individual displays a defective DNA damage response caused by impaired ATR function. We identified a synonymous mutation in affected individuals that alters ATR splicing. The mutation confers a phenotype including marked microcephaly (head circumference 12 s.d. below the mean) and dwarfism (5 s.d. below the mean). Our analysis shows that UV-induced ATR activation can occur in non-replicating cells following processing by nucleotide excision repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号