首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Although many genes that predispose for epilepsy in humans have been determined, those that underlie the classical syndromes of idiopathic generalized epilepsy (IGE) have yet to be identified. We report that an Ala322Asp mutation in GABRA1, encoding the alpha1 subunit of the gamma-aminobutyric acid receptor subtype A (GABA(A)), is found in affected individuals of a large French Canadian family with juvenile myoclonic epilepsy. Compared with wildtype receptors, GABA(A) receptors that contain the mutant subunit show a lesser amplitude of GABA-activated currents in vitro, indicating that seizures may result from loss of function of this inhibitory ligand-gated channel. Our results confirm that mutation of GABRA1 predisposes towards a common idiopathic generalized epilepsy syndrome in humans.  相似文献   

2.
Mental retardation and epilepsy often occur together. They are both heterogeneous conditions with acquired and genetic causes. Where causes are primarily genetic, major advances have been made in unraveling their molecular basis. The human X chromosome alone is estimated to harbor more than 100 genes that, when mutated, cause mental retardation. At least eight autosomal genes involved in idiopathic epilepsy have been identified, and many more have been implicated in conditions where epilepsy is a feature. We have identified mutations in an X chromosome-linked, Aristaless-related, homeobox gene (ARX), in nine families with mental retardation (syndromic and nonspecific), various forms of epilepsy, including infantile spasms and myoclonic seizures, and dystonia. Two recurrent mutations, present in seven families, result in expansion of polyalanine tracts of the ARX protein. These probably cause protein aggregation, similar to other polyalanine and polyglutamine disorders. In addition, we have identified a missense mutation within the ARX homeodomain and a truncation mutation. Thus, it would seem that mutation of ARX is a major contributor to X-linked mental retardation and epilepsy.  相似文献   

3.
Epilepsies affect at least 2% of the population at some time in life, and many forms have genetic determinants. We have found a mutation in a gene encoding a GABA(A) receptor subunit in a large family with epilepsy. The two main phenotypes were childhood absence epilepsy (CAE) and febrile seizures (FS). There is a recognized genetic relationship between FS and CAE, yet the two syndromes have different ages of onset, and the physiology of absences and convulsions is distinct. This suggests the mutation has age-dependent effects on different neuronal networks that influence the expression of these clinically distinct, but genetically related, epilepsy phenotypes. We found that the mutation in GABRG2 (encoding the gamma2-subunit) abolished in vitro sensitivity to diazepam, raising the possibility that endozepines do in fact exist and have a physiological role in preventing seizures.  相似文献   

4.
The epilepsies are a common, clinically heterogeneous group of disorders defined by recurrent unprovoked seizures. Here we describe identification of the causative gene in autosomal-dominant partial epilepsy with auditory features (ADPEAF, MIM 600512), a rare form of idiopathic lateral temporal lobe epilepsy characterized by partial seizures with auditory disturbances. We constructed a complete, 4.2-Mb physical map across the genetically implicated disease-gene region, identified 28 putative genes (Fig. 1) and resequenced all or part of 21 genes before identifying presumptive mutations in one copy of the leucine-rich, glioma-inactivated 1 gene (LGI1) in each of five families with ADPEAF. Previous studies have indicated that loss of both copies of LGI1 promotes glial tumor progression. We show that the expression pattern of mouse Lgi1 is predominantly neuronal and is consistent with the anatomic regions involved in temporal lobe epilepsy. Discovery of LGI1 as a cause of ADPEAF suggests new avenues for research on pathogenic mechanisms of idiopathic epilepsies.  相似文献   

5.
Idiopathic generalized epilepsy (IGE) is an inherited neurological disorder affecting about 0.4% of the world's population. Mutations in ten genes causing distinct forms of idiopathic epilepsy have been identified so far, but the genetic basis of many IGE subtypes is still unknown. Here we report a gene associated with the four most common IGE subtypes: childhood and juvenile absence epilepsy (CAE and JAE), juvenile myoclonic epilepsy (JME), and epilepsy with grand mal seizures on awakening (EGMA; ref. 8). We identified three different heterozygous mutations in the chloride-channel gene CLCN2 in three unrelated families with IGE. These mutations result in (i) a premature stop codon (M200fsX231), (ii) an atypical splicing (del74-117) and (iii) a single amino-acid substitution (G715E). All mutations produce functional alterations that provide distinct explanations for their pathogenic phenotypes. M200fsX231 and del74-117 cause a loss of function of ClC-2 channels and are expected to lower the transmembrane chloride gradient essential for GABAergic inhibition. G715E alters voltage-dependent gating, which may cause membrane depolarization and hyperexcitability.  相似文献   

6.
N-methyl-D-aspartate (NMDA) receptors mediate excitatory neurotransmission in the mammalian brain. Two glycine-binding NR1 subunits and two glutamate-binding NR2 subunits each form highly Ca2(+)-permeable cation channels which are blocked by extracellular Mg2(+) in a voltage-dependent manner. Either GRIN2B or GRIN2A, encoding the NMDA receptor subunits NR2B and NR2A, was found to be disrupted by chromosome translocation breakpoints in individuals with mental retardation and/or epilepsy. Sequencing of GRIN2B in 468 individuals with mental retardation revealed four de novo mutations: a frameshift, a missense and two splice-site mutations. In another cohort of 127 individuals with idiopathic epilepsy and/or mental retardation, we discovered a GRIN2A nonsense mutation in a three-generation family. In a girl with early-onset epileptic encephalopathy, we identified the de novo GRIN2A mutation c.1845C>A predicting the amino acid substitution p.N615K. Analysis of NR1-NR2A(N615K) (NR2A subunit with the p.N615K alteration) receptor currents revealed a loss of the Mg2(+) block and a decrease in Ca2(+) permeability. Our findings suggest that disturbances in the neuronal electrophysiological balance during development result in variable neurological phenotypes depending on which NR2 subunit of NMDA receptors is affected.  相似文献   

7.
Clustered attacks of epileptic episodes originating from the frontal lobe during sleep are the main symptoms of autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE, MIM 600513). Despite the clinical homogeneity, three forms of ADNFLE have been associated with chromosomes 20 (ENFL1; ref. 1), 15 (ENFL2; ref. 2) and 1 (ENFL3; ref. 3). Mutations of the gene encoding the neuronal nicotinic acetylcholine receptor alpha 4 subunit (CHRNA4 ) have been found in ADNFLE-ENFL1 families, but these mutations account for only a small proportion of ADNFLE cases. The newly identified locus associated with ENFL3 harbours several candidate genes, including CHRNB2 (ref. 8), whose gene product, the beta 2 nicotinic acetylcholine receptor (nAChR) subunit, co-assembles with the alpha 4 nAChR subunit to form the active receptor.  相似文献   

8.
A mutation in SLC11A3 is associated with autosomal dominant hemochromatosis.   总被引:15,自引:0,他引:15  
Hereditary hemochromatosis (HH) is a very common disorder characterized by iron overload and multi-organ damage. Several genes involved in iron metabolism have been implicated in the pathology of HH (refs. 1-4). We report that a mutation in the gene encoding Solute Carrier family 11, member A3 (SLC11A3), also known as ferroportin, is associated with autosomal dominant hemochromatosis.  相似文献   

9.
Carney complex (CNC) is a multiple neoplasia syndrome characterized by spotty skin pigmentation, cardiac and other myxomas, endocrine tumours and psammomatous melanotic schwannomas. CNC is inherited as an autosomal dominant trait and the genes responsible have been mapped to 2p16 and 17q22-24 (refs 6, 7). Because of its similarities to the McCune-Albright syndrome and other features, such as paradoxical responses to endocrine signals, genes implicated in cyclic nucleotide-dependent signalling have been considered candidates for causing CNC (ref. 10). In CNC families mapping to 17q, we detected loss of heterozygosity (LOH) in the vicinity of the gene (PRKAR1A) encoding protein kinase A regulatory subunit 1-alpha (RIalpha), including a polymorphic site within its 5' region. We subsequently identified three unrelated kindreds with an identical mutation in the coding region of PRKAR1A. Analysis of additional cases revealed the same mutation in a sporadic case of CNC, and different mutations in three other families, including one with isolated inherited cardiac myxomas. Analysis of PKA activity in CNC tumours demonstrated a decreased basal activity, but an increase in cAMP-stimulated activity compared with non-CNC tumours. We conclude that germline mutations in PRKAR1A, an apparent tumour-suppressor gene, are responsible for the CNC phenotype in a subset of patients with this disease.  相似文献   

10.
11.
We report germline loss-of-function mutations in SPRED1 in a newly identified autosomal dominant human disorder. SPRED1 is a member of the SPROUTY/SPRED family of proteins that act as negative regulators of RAS->RAF interaction and mitogen-activated protein kinase (MAPK) signaling. The clinical features of the reported disorder resemble those of neurofibromatosis type 1 and consist of multiple café-au-lait spots, axillary freckling and macrocephaly. Melanocytes from a café-au-lait spot showed, in addition to the germline SPRED1 mutation, an acquired somatic mutation in the wild-type SPRED1 allele, indicating that complete SPRED1 inactivation is needed to generate a café-au-lait spot in this syndrome. This disorder is yet another member of the recently characterized group of phenotypically overlapping syndromes caused by mutations in the genes encoding key components of the RAS-MAPK pathway. To our knowledge, this is the first report of mutations in the SPRY (SPROUTY)/SPRED family of genes in human disease.  相似文献   

12.
Inherited retinal diseases are a common cause of visual impairment in children and young adults, often resulting in severe loss of vision in later life. The most frequent form of inherited retinopathy is retinitis pigmentosa (RP), with an approximate incidence of 1 in 3,500 individuals worldwide. RP is characterized by night blindness and progressive degeneration of the midperipheral retina, accompanied by bone spicule-like pigmentary deposits and a reduced or absent electroretinogram (ERG). The disease process culminates in severe reduction of visual fields or blindness. RP is genetically heterogeneous, with autosomal dominant, autosomal recessive and X-linked forms. Here we have identified two mutations in a novel retina-specific gene from chromosome 8q that cause the RP1 form of autosomal dominant RP in three unrelated families. The protein encoded by this gene is 2,156 amino acids and its function is currently unknown, although the amino terminus has similarity to that of the doublecortin protein, whose gene (DCX) has been implicated in lissencephaly in humans. Two families have a nonsense mutation in codon 677 of this gene (Arg677stop), whereas the third family has a nonsense mutation in codon 679 (Gln679stop). In one family, two individuals homozygous for the mutant gene have more severe retinal disease compared with heterozygotes.  相似文献   

13.
Hyperimmunoglobulinaemia D and periodic fever syndrome (HIDS; MIM 260920) is a rare, apparently monogenic, autosomal recessive disorder characterized by recurrent episodes of fever accompanied with lymphadenopathy, abdominal distress, joint involvement and skin lesions. All patients have high serum IgD values (>100 U/ml) and HIDS 'attacks' are associated with an intense acute phase reaction whose exact pathophysiology remains obscure. Two other hereditary febrile disorders have been described. Familial Mediterranean fever (MIM 249100) is an autosomal recessive disorder affecting mostly populations from the Mediterranean basin and is caused by mutations in the gene MEFV (refs 5,6). Familial Hibernian fever (MIM 142680), also known as autosomal dominant familial recurrent fever, is caused by missense mutations in the gene encoding type I tumour necrosis factor receptor. Here we perform a genome-wide search to map the HIDS gene. Haplotype analysis placed the gene at 12q24 between D12S330 and D12S79. We identified the gene MVK, encoding mevalonate kinase (MK, ATP:mevalonate 5-phosphotransferase; EC 2.7.1.36), as a candidate gene. We characterized 3 missense mutations, a 92-bp loss stemming from a deletion or from exon skipping, and the absence of expression of one allele. Functional analysis demonstrated diminished MK activity in fibroblasts from HIDS patients. Our data establish MVK as the gene responsible for HIDS.  相似文献   

14.
By exome sequencing, we found de novo SMARCB1 mutations in two of five individuals with typical Coffin-Siris syndrome (CSS), a rare autosomal dominant anomaly syndrome. As SMARCB1 encodes a subunit of the SWItch/Sucrose NonFermenting (SWI/SNF) complex, we screened 15 other genes encoding subunits of this complex in 23 individuals with CSS. Twenty affected individuals (87%) each had a germline mutation in one of six SWI/SNF subunit genes, including SMARCB1, SMARCA4, SMARCA2, SMARCE1, ARID1A and ARID1B.  相似文献   

15.
In horses, graying with age is an autosomal dominant trait associated with a high incidence of melanoma and vitiligo-like depigmentation. Here we show that the Gray phenotype is caused by a 4.6-kb duplication in intron 6 of STX17 (syntaxin-17) that constitutes a cis-acting regulatory mutation. Both STX17 and the neighboring NR4A3 gene are overexpressed in melanomas from Gray horses. Gray horses carrying a loss-of-function mutation in ASIP (agouti signaling protein) had a higher incidence of melanoma, implying that increased melanocortin-1 receptor signaling promotes melanoma development in Gray horses. The Gray horse provides a notable example of how humans have cherry-picked mutations with favorable phenotypic effects in domestic animals.  相似文献   

16.
Mutations in SEPT9 cause hereditary neuralgic amyotrophy   总被引:7,自引:0,他引:7  
Hereditary neuralgic amyotrophy (HNA) is an autosomal dominant recurrent neuropathy affecting the brachial plexus. HNA is triggered by environmental factors such as infection or parturition. We report three mutations in the gene septin 9 (SEPT9) in six families with HNA linked to chromosome 17q25. HNA is the first monogenetic disease caused by mutations in a gene of the septin family. Septins are implicated in formation of the cytoskeleton, cell division and tumorigenesis.  相似文献   

17.
Initially identified in high-grade gliomas, mutations in the PTEN tumor-suppressor are also found in many sporadic cancers and a few related autosomal dominant hamartoma syndromes. PTEN is a 3'-specific phosphatidylinositol-3,4,5-trisphosphate (PI(3,4,5)P3) phosphatase and functions as a negative regulator of PI3K signaling. We generated a tissue-specific deletion of the mouse homolog Pten to address its role in brain function. Mice homozygous for this deletion (PtenloxP/loxP;Gfap-cre), developed seizures and ataxia by 9 wk and died by 29 wk. Histological analysis showed brain enlargement in PtenloxP/loxP;Gfap-cre mice as a consequence of primary granule-cell dysplasia in the cerebellum and dentate gyrus. Pten mutant cells showed a cell-autonomous increase in soma size and elevated phosphorylation of Akt. These data represent the first evidence for the role of Pten and Akt in cell size regulation in mammals and provide an animal model for a human phakomatosis condition, Lhermitte-Duclos disease (LDD).  相似文献   

18.
The autosomal recessive form of Robinow syndrome (RRS; MIM 268310) is a severe skeletal dysplasia with generalized limb bone shortening, segmental defects of the spine, brachydactyly and a dysmorphic facial appearance. We previously mapped the gene mutated in RRS to chromosome 9q22 (ref. 4), a region that overlaps the locus for autosomal dominant brachydactyly type B (refs 5,6). The recent identification of ROR2, encoding an orphan receptor tyrosine kinase, as the gene mutated in brachydactyly type B (BDB1; ref. 7) and the mesomelic dwarfing in mice homozygous for a lacZ and/or a neo insertion into Ror2 (refs 8,9) made this gene a candidate for RRS. Here we report homozygous missense mutations in both intracellular and extracellular domains of ROR2 in affected individuals from 3 unrelated consanguineous families, and a nonsense mutation that removes the tyrosine kinase domain and all subsequent 3' regions of the gene in 14 patients from 7 families from Oman. The nature of these mutations suggests that RRS is caused by loss of ROR2 activity. The identification of mutations in three distinct domains (containing Frizzled-like, kringle and tyrosine kinase motifs) indicates that these are all essential for ROR2 function.  相似文献   

19.
The autosomal dominant retinitis pigmentosa (RP) locus, designated RP1, has been mapped through linkage studies to a 4-cM interval at 8q11-13. Here we describe a new photoreceptor-specific gene that maps in this interval and whose expression is modulated by retinal oxygen levels in vivo. This gene consists of at least 4 exons that encode a predicted protein of 2,156 amino acids. A nonsense mutation at codon 677 of this gene is present in approximately 3% of cases of dominant RP in North America. We also detected two deletion mutations that cause frameshifts and introduce premature termination codons in three other families with dominant RP. Our data suggest that mutations in this gene cause dominant RP, and that the encoded protein has an important but unknown role in photoreceptor biology.  相似文献   

20.
Mutations in a gene encoding an ABC transporter cause pseudoxanthoma elasticum   总被引:15,自引:0,他引:15  
Pseudoxanthoma elasticum (PXE) is a heritable disorder characterized by calcification of elastic fibres in skin, arteries and retina that results in dermal lesions with associated laxity and loss of elasticity, arterial insufficiency and retinal haemorrhages leading to macular degeneration. PXE is usually found as a sporadic disorder, but examples of both autosomal recessive and autosomal dominant forms of PXE have been observed. Partial manifestations of the PXE phenotype have also been described in presumed carriers in PXE families. Linkage of both dominant and recessive forms of PXE to a 5-cM domain on chromosome 16p13.1 has been reported (refs 8,9). We have refined this locus to an 820-kb region containing 6 candidate genes. Here we report the exclusion of five of these genes and the identification of the first mutations responsible for the development of PXE in a gene encoding a protein associated with multidrug resistance (ABCC6).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号