首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
简要地回顾了脉冲星、中子星和夸克星的研究历史;总结了当前(特别是笔者所在研究小组)对于夸克星研究的进展并指出所面临的主要问题,特别讨论了区分普通中子星和夸克星的可能途径;给出了一些夸克星候选体以及未来可能的观测检验。  相似文献   

2.
详细介绍了中子星的吸积以及密近双星的演化。Lipunov等讨论了在密近双星的演化中形成射电脉冲星与黑洞组成的双星的可能性,结论是在大约700个射电脉冲星中,至少应当发现一个位于脉冲星与黑洞组成的双星系统。  相似文献   

3.
简述了中子星结构、组成、演化的理论研究以及相关的观测进展,对演化后期孤立毫秒脉冲星和处于双星系统中的脉冲星可能存在夸克解禁和夸克重囚禁的现象进行了理论上和观测证据上的探讨。认为双星系统中的脉冲星可能会由于条件不同,会分别出现夸克解禁和夸克重囚禁的现象。  相似文献   

4.
测量中子星表面辐射谱的引力红移被认为是探究这类致密天体基本物理特性最为直接有效的手段. 但是,脉冲星、磁星这些强磁化中子星表面的辐射红移不仅源于引力的作用, 还需要考虑星体表面的磁化等离子体以及由超强磁场所诱导的量子电动力学(quantum electrodynamics, QED) 真空极化效应对辐射的电磁作用. 运用Gordon有效度规理论研究磁化等离子体以及QED真空极化效应对星体辐射的影响. 计算结果表明, 一般情况下对辐射引力红移的修正起主要作用的是星体表面的磁化等离子体, 但在某些特定情况下, 还必须考虑QED真空极化效应的作用.  相似文献   

5.
 2016年9月25日落成的中国自行设计建造的500 m口径球面射电望远镜(FAST)是目前全世界最大口径的射电望远镜。在调试期间已成功发现了脉冲星,实现了国内设备发现脉冲星的零突破。脉冲星是宇宙中的一类奇妙天体,是验证强引力场、强磁场和高密度等极端物理环境下物理规律的"天然实验室"。作为脉冲星研究的利器,预计FAST大规模巡天能够大幅提高已知的脉冲星数目。FAST还将在低频引力波探测、脉冲星物理、星际和星系际介质探测、脉冲星时间尺度建立及脉冲星导航等领域取得突破性进展。在上述研究中,国内天文设备取长补短、相互补充,有望实现中国脉冲星观测研究跨越式发展。  相似文献   

6.
 脉冲星自1967年发现以来,50年的观测和理论研究取得巨大进展,期间曾2次获颁诺贝尔物理学奖。脉冲星以其高度致密和强引力场堪称宇宙天然实验室,可用来验证爱因斯坦广义相对论及进行引力波探测,推动了天文学与物理学研究的发展。本文简介了脉冲星的发现及其性质,并综述了脉冲星导航以及最近建成的500 m口径球面射电望远镜(FAST)的脉冲星探测研究进展。  相似文献   

7.
极亮X射线脉冲星的证认表明,极亮X射线源中可能存在一定数量的中子星,其拥有超爱丁顿极限光度和较高的自转周期变化率,这些特性可能与星体的磁场密切相关.NGC 5907 ULX-1是第三颗证认的极亮X射线脉冲星,其峰值光度约为爱丁顿极限的1000倍.本文计算了NGC 5907 ULX-1目前的偶极磁场强度,并模拟了其随时间...  相似文献   

8.
本文研究脉冲星的周期变化与地壳运动的关系,指出:(1)由地震引起的板块运动和板内运动会影响观测到的脉冲星的脉冲周期的变率,特别是一些周期变率较小的脉冲星,这种影响将产生显著的观测效应;(2)分析现代脉冲星的观测资料,有助于研究板块结构,板块运动和地震预报.  相似文献   

9.
脉冲星子脉冲的强度调制特征对揭示脉冲星辐射过程和磁层几何具有重要意义.前人研究表明,PSR J2313+4253的单脉冲序列具有44倍和2倍自转周期的强度调制.其中2倍周期的调制周期被称为奇偶性调制,其物理起源并不清晰.本文利用佳木斯66 m射电望远镜的观测数据,对脉冲星J2313+4253在2250 MHz的单脉冲辐射特性进行了详细研究.通过相位分离涨落谱(LRFS)、谐频分离的涨落谱(HRFS)和二维涨落谱(2DFS)的分析方法,发现PSR J2313+4253的奇偶性调制来自于其短周期子脉冲漂移,并且调制现象展现出了时间依赖性.分析表明,旋转木马模型下,奇偶性调制可能起源于脉冲星火花放电过程中,辐射区子辐射束间边界不清晰而发生的混叠效应.  相似文献   

10.
来自脉冲星的射电辐射在传播过程中会与星际间介质中的自由电子相互作用,发生色散现象.脉冲星相干消色散就是通过计算,将采样后的脉冲星信号进行快速傅里叶(FFT)变换,在频域同chirp函数相乘,从而实现消色散的过程.介绍了基于计算机集群的相干消色散的原理以及数据计算流程,同时分析了计算过程中参数的选取及其与集群性能的关系,并对于脉冲星相干消色散集群系统的发展进行了介绍.  相似文献   

11.
Gavriil FP  Kaspi VM  Woods PM 《Nature》2002,419(6903):142-144
Anomalous X-ray pulsars (AXPs) are a class of rare X-ray emitting pulsars whose energy source has been perplexing for some 20 years. Unlike other X-ray emitting pulsars, AXPs cannot be powered by rotational energy or by accretion of matter from a binary companion star, hence the designation 'anomalous'. Many of the rotational and radiative properties of the AXPs are strikingly similar to those of another class of exotic objects, the soft-gamma-ray repeaters (SGRs). But the defining property of the SGRs--their low-energy-gamma-ray and X-ray bursts--has not hitherto been observed for AXPs. Soft-gamma-ray repeaters are thought to be 'magnetars', which are young neutron stars whose emission is powered by the decay of an ultra-high magnetic field; the suggestion that AXPs might also be magnetars has been controversial. Here we report two X-ray bursts, with properties similar to those of SGRs, from the direction of the anomalous X-ray pulsar 1E1048.1 - 5937. These events imply a close relationship (perhaps evolutionary) between AXPs and SGRs, with both being magnetars.  相似文献   

12.
Kern B  Martin C 《Nature》2002,417(6888):527-529
Anomalous X-ray pulsars (AXPs) differ from ordinary radio pulsars in that their X-ray luminosity is orders of magnitude greater than their rate of rotational energy loss, and so they require an additional energy source. One possibility is that AXPs are highly magnetized neuron stars or 'magnetars' having surface magnetic fields greater than 10(14) G. This would make them similar to the soft gamma-ray repeaters (SGRs), but alternative models that do not require extreme magnetic fields also exist. An optical counterpart to the AXP 4U0142+61 was recently discovered, consistent with emission from a magnetar, but also from a magnetized hot white dwarf, or an accreting isolated neutron star. Here we report the detection of optical pulsations from 4U0142+61. The pulsed fraction of optical light (27 per cent) is five to ten times greater than that of soft X-rays, from which we conclude that 4U0142+61 is a magnetar. Although this establishes a direct relationship between AXPs and the soft gamma-ray repeaters, the evolutionary connection between AXPs, SGRs and radio pulsars remains controversial.  相似文献   

13.
Stairs IH  Lyne AG  Shemar SL 《Nature》2000,406(6795):484-486
Pulsars are rotating neutron stars that produce lighthouse-like beams of radio emission from their magnetic poles. The observed pulse of emission enables their rotation rates to be measured with great precision. For some young pulsars, this provides a means of studying the interior structure of neutron stars. Most pulsars have stable pulse shapes, and slow down steadily (for example, see ref. 20). Here we report the discovery of long-term, highly periodic and correlated variations in both the pulse shape and the rate of slow-down of the pulsar PSR B1828-11. The variations are best described as harmonically related sinusoids, with periods of approximately 1,000, 500 and 250 days, probably resulting from precession of the spin axis caused by an asymmetry in the shape of the pulsar. This is difficult to understand theoretically, because torque-free precession of a solitary pulsar should be damped out by the vortices in its superfluid interior.  相似文献   

14.
Wang Z  Chakrabarty D  Kaplan DL 《Nature》2006,440(7085):772-775
Pulsars are rotating, magnetized neutron stars that are born in supernova explosions following the collapse of the cores of massive stars. If some of the explosion ejecta fails to escape, it may fall back onto the neutron star or it may possess sufficient angular momentum to form a disk. Such 'fallback' is both a general prediction of current supernova models and, if the material pushes the neutron star over its stability limit, a possible mode of black hole formation. Fallback disks could dramatically affect the early evolution of pulsars, yet there are few observational constraints on whether significant fallback occurs or even the actual existence of such disks. Here we report the discovery of mid-infrared emission from a cool disk around an isolated young X-ray pulsar. The disk does not power the pulsar's X-ray emission but is passively illuminated by these X-rays. The estimated mass of the disk is of the order of 10 Earth masses, and its lifetime (> or = 10(6) years) significantly exceeds the spin-down age of the pulsar, supporting a supernova fallback origin. The disk resembles protoplanetary disks seen around ordinary young stars, suggesting the possibility of planet formation around young neutron stars.  相似文献   

15.
Anomalous X-ray pulsars (AXPs) are slowly rotating neutron stars with very bright and highly variable X-ray emission that are believed to be powered by ultra-strong magnetic fields of >10(14) G, according to the 'magnetar' model. The radio pulsations that have been observed from more than 1,700 neutron stars with weaker magnetic fields have never been detected from any of the dozen known magnetars. The X-ray pulsar XTE J1810-197 was revealed (in 2003) as the first AXP with transient emission when its luminosity increased 100-fold from the quiescent level; a coincident radio source of unknown origin was detected one year later. Here we show that XTE J1810-197 emits bright, narrow, highly linearly polarized radio pulses, observed at every rotation, thereby establishing that magnetars can be radio pulsars. There is no evidence of radio emission before the 2003 X-ray outburst (unlike ordinary pulsars, which emit radio pulses all the time), and the flux varies from day to day. The flux at all radio frequencies is approximately equal--and at >20 GHz XTE J1810-197 is currently the brightest neutron star known. These observations link magnetars to ordinary radio pulsars, rule out alternative accretion models for AXPs, and provide a new window into the coronae of magnetars.  相似文献   

16.
Millisecond pulsars are neutron stars that are thought to have been spun-up by mass accretion from a stellar companion. It is not known whether there is a natural brake for this process, or if it continues until the centrifugal breakup limit is reached at submillisecond periods. Many neutron stars that are accreting mass from a companion star exhibit thermonuclear X-ray bursts that last tens of seconds, caused by unstable nuclear burning on their surfaces. Millisecond-period brightness oscillations during bursts from ten neutron stars (as distinct from other rapid X-ray variability that is also observed) are thought to measure the stellar spin, but direct proof of a rotational origin has been lacking. Here we report the detection of burst oscillations at the known spin frequency of an accreting millisecond pulsar, and we show that these oscillations always have the same rotational phase. This firmly establishes burst oscillations as nuclear-powered pulsations tracing the spin of accreting neutron stars, corroborating earlier evidence. The distribution of spin frequencies of the 11 nuclear-powered pulsars cuts off well below the breakup frequency for most neutron-star models, supporting theoretical predictions that gravitational radiation losses can limit accretion torques in spinning up millisecond pulsars.  相似文献   

17.
本文通过相对论平均场理论和Tolman-Oppenheimer-Volkoff方程来研究中子星的微观和宏观性质。与最新的脉冲星J1614-2230的观测数据作比照,可以发现除了传统的中子星物质外,Δ共振态中的Δ-和Δ0粒子也很可能大量存在于PSR J1614-2230的内部。另外,也进一步探讨了Δ共振态对中子星所产生的影响。  相似文献   

18.
A two-solar-mass neutron star measured using Shapiro delay   总被引:1,自引:0,他引:1  
Demorest PB  Pennucci T  Ransom SM  Roberts MS  Hessels JW 《Nature》2010,467(7319):1081-1083
Neutron stars are composed of the densest form of matter known to exist in our Universe, the composition and properties of which are still theoretically uncertain. Measurements of the masses or radii of these objects can strongly constrain the neutron star matter equation of state and rule out theoretical models of their composition. The observed range of neutron star masses, however, has hitherto been too narrow to rule out many predictions of 'exotic' non-nucleonic components. The Shapiro delay is a general-relativistic increase in light travel time through the curved space-time near a massive body. For highly inclined (nearly edge-on) binary millisecond radio pulsar systems, this effect allows us to infer the masses of both the neutron star and its binary companion to high precision. Here we present radio timing observations of the binary millisecond pulsar J1614-2230 that show a strong Shapiro delay signature. We calculate the pulsar mass to be (1.97?±?0.04)M(⊙), which rules out almost all currently proposed hyperon or boson condensate equations of state (M(⊙), solar mass). Quark matter can support a star this massive only if the quarks are strongly interacting and are therefore not 'free' quarks.  相似文献   

19.
Aharonian FA  Bogovalov SV  Khangulyan D 《Nature》2012,482(7386):507-509
Pulsars are thought to eject electron-positron winds that energize the surrounding environment, with the formation of a pulsar wind nebula. The pulsar wind originates close to the light cylinder, the surface at which the pulsar co-rotation velocity equals the speed of light, and carries away much of the rotational energy lost by the pulsar. Initially the wind is dominated by electromagnetic energy (Poynting flux) but later this is converted to the kinetic energy of bulk motion. It is unclear exactly where this takes place and to what speed the wind is accelerated. Although some preferred models imply a gradual acceleration over the entire distance from the magnetosphere to the point at which the wind terminates, a rapid acceleration close to the light cylinder cannot be excluded. Here we report that the recent observations of pulsed, very high-energy γ-ray emission from the Crab pulsar are explained by the presence of a cold (in the sense of the low energy of the electrons in the frame of the moving plasma) ultrarelativistic wind dominated by kinetic energy. The conversion of the Poynting flux to kinetic energy should take place abruptly in the narrow cylindrical zone of radius between 20 and 50 light-cylinder radii centred on the axis of rotation of the pulsar, and should accelerate the wind to a Lorentz factor of (0.5-1.0)?×?10(6). Although the ultrarelativistic nature of the wind does support the general model of pulsars, the requirement of the very high acceleration of the wind in a narrow zone not far from the light cylinder challenges current models.  相似文献   

20.
Soft-gamma-ray repeaters (SGRs) are galactic X-ray stars that emit numerous short-duration (about 0.1 s) bursts of hard X-rays during sporadic active periods. They are thought to be magnetars: strongly magnetized neutron stars with emissions powered by the dissipation of magnetic energy. Here we report the detection of a long (380 s) giant flare from SGR 1806-20, which was much more luminous than any previous transient event observed in our Galaxy. (In the first 0.2 s, the flare released as much energy as the Sun radiates in a quarter of a million years.) Its power can be explained by a catastrophic instability involving global crust failure and magnetic reconnection on a magnetar, with possible large-scale untwisting of magnetic field lines outside the star. From a great distance this event would appear to be a short-duration, hard-spectrum cosmic gamma-ray burst. At least a significant fraction of the mysterious short-duration gamma-ray bursts may therefore come from extragalactic magnetars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号