首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
研究了在阶为n、直径为d且悬挂点数为s的所有树中,树具有最大的谱半径问题.令Pd+1是一个d+1阶的固定路,Tn,d,s表示通过在n+1的第r个顶点生成s-2条几乎等长的路得到的阶为n、直径为d且悬挂点数为s的树,其中r=r(d)是(d+1)/2的整数部分,则Tn,d,s具有最大谱半径.该结论推广了给定阶、直径或悬挂点数的树的谱半径的一些结果.借助该结论,也得到了树的谱半径与其独立数、覆盖数、边覆盖数和全独立数之间的关系.  相似文献   

2.
称一个图G的所有特征根的绝对值的和为G的能量,用E(G)表示.用Tn,d表示具有n个顶点,直径为d的树集.这里3 0d 0n-2,设T(n,d;n1,n2,…,nd-1)∈Tn,d是由路v0v1…vd的顶点vi(1 0i 0d-1)粘结ni条悬挂边得到的树,显然n=d+1+∑id=-11ni.令Tn,d={T(n,d;0,…,ni,0,…,0)|n=ni+d+1}.本文对树集Tn,d中的树依能量进行了排序.  相似文献   

3.
设G为有限无向简单图,G的邻接矩阵的特征值称为G的特征值,G的最大特征值称为G的谱半径.二分图的特征值在量子化学中有意义,因而研究二分图的特征值有重要的实用价值.K1^l,k(k≥l≥1)记星图K1.k的l个悬挂点各接出一条悬挂边所得的图.Tn(q)表示边无关数为q(≥5)的n阶树的集合.(1.1)T(q-3,n-2q 1)∈Tn(q)为K1^q-2,n-q-l的某个2度顶点上接出一条路P2所得的图.给出了Tn(q)中树的谱半径的第三大值。并证明了:当n-2q=1时,取得该值的唯一的树为K1^q,q;当n-2q≥2时,取得该值的树为(1,1)T(q-3,n-2q 1).  相似文献   

4.
设G=(V,E)是一个简单的连通图;用A(G),D(G),分别表示G的邻接矩阵和顶点的度对角矩阵,令L(G)=D(G)-A(G)表示G的拉普拉斯矩阵,设L(G)的特征值为μ1≤μ2≤ ... ≤μn,其最大特征值称为图G的谱半径,记作μ=μn.本文就循环图的拉普拉斯谱半径的下界给与讨论,我们得到了两个结论.  相似文献   

5.
对于图G内的任意两点u和v,u-v测地线是指在u和v之间的最短路.I(u,v)表示位于一条u-v测地线上所有点的集合,对于S包含V(G),I(S)表示所有,(u,v)的并。这里u,u∈S.G的测地数g(G)是使I(S)=V(G)的最小点集S的基数.图的每个最小测地集都不包括它的割点,如果图G是一个有n≥3个顶点,k≥1个割点的块图.那么g(G)=n-k.树T有n≥2个顶点,l片叶子。如果将树T的所有点ui用图Hi来代替。用Hi∨Hj来代替树T的所有边uivj∈E(T),将得到的新图定义为Tn(H)。有g(Ta(Kd))=ld和g(Tm(Cd))≤min{[d/2]l。2(n-l)}/.  相似文献   

6.
对于整数k,设Tn(x)=(1+x)^k+(1-x)^k-2^k,设m,n为正整数,且m4,均有T4(x)不整除Tn(x).  相似文献   

7.
设G为n阶连通图,集合S称为图G的全控制集,如果V(G)的每个顶点都和S中某点相邻。图G的全控制数,记为γt(G),是图G的全控制集的最小基数。证明了对阶数n≥3且T≠K1,n-1的树T,γt(T)=min{(2n/3),n-l,[n/2]+l-1},这里l表示树T中叶子的数目。  相似文献   

8.
令(n,△)是具有n个顶点,最大度为△的树的全体.1.△(n)是具有n个顶点且每个顶点的度是1或△的树的全体.对于任意λ≠0,本文分别在(n,△)和。1.△(n)中确定了具有最大的五一修改的Wjener指数的极值图.  相似文献   

9.
设{Tn}n∈N为一列具有Δ性质的算子,本文得到了算子T=∞∑n=1 Tn 在鞅空间HpS(1〈p〈∞)上有界的一些充分条件,从而推广了ToledoR的结果。  相似文献   

10.
对线性算子T的n次幂Tn,讨论其零空间N(Tn)的维数α(Tn):=dim N(Tn)与n.α(T)的关系,证明了当T是上半-Fredholm算子时,α(Tn)=n.α(T)对一切自然数n成立当且仅当T是半正则的.  相似文献   

11.
断裂度是图的哈密尔顿性和容错性的一个有效度量.对连通图G,它被定义为b(G)=max{w(G-S)-S:S是G的点断集},其中w(G-S)表示G-S的分支数.文章研究树的断裂度的上界,得到如下结论:设T是一棵阶为n(≥2),最大度为Δ的树.若r(n-1/Δ)≠1,则b(T)≤n-2「n-1/Δd」;若r(n-1/Δ)=1,则b(T)≤n-2「n-1/Δ」+1,其中r(n-1/Δ)和「n-1/Δ」分别表示n-1/Δ的余数和上整数.最后我们用例子说明这个上界是可达的.  相似文献   

12.
李海英  孙磊 《山东科学》2010,23(4):10-12
给定一个连通图G=(V,E)及其一棵支撑树T,图G的一个L(d,1)-T标号即函数g:V(G)→{0,1,2,…},满足:(1)如果xy∈E(G),则|g(x)-g(y)|≥1;(2)如果dG(x,y)=2,则|g(x)-g(y)|≥1;(3)如果xy∈E(T),则|g(x)-g(y)|≥d.假设图G有一个L(d,1)-T标号函数g:g(V){0,1,2,…,k},则图G的所有L(d,1)-T标号函数中最小的整数k记为L(d,1)-T标号数λdT(G,T).本文证明了若G是无K1,t(3≤t≤n)的连通图,其最大度为Δ,|G|=n,T为G的任意支撑树,则λdT(G,T)≤tt--12Δ2+Δ+2d-2.  相似文献   

13.
证明下列非线性拟抛物型方程的Cauchy问题ut-△ut-△u=△g(u),x∈ R^n,t>0;u(x,0)=u0(x),x∈R^n,在C^2([0,∞);W^m,p,p(R^n)∩L^∞(R^n))(m≥0,1≤p≤∞)中存在唯一整体广义解且在C^2([0,∞);W^m,p(R^n)∩L^∞(R^n) ∩L^2(R^n))(m>2+n/p,1≤p≤∞)中存在唯一整体古典解.  相似文献   

14.
随着计算机技术和网络技术的不断发展,图的谱被广泛应用于网络拓扑结构的特征分析,Laplacian矩阵的谱(特别是最大特征值和次小特征值)在网络结构中扮演重要角色.设G=(V,E)是一个具有n个顶点的简单图,A(G)为G的邻接矩阵,D(G)为G的度对角矩阵.定义G的Laplacian矩阵为L(G)=D(G)-A(G),设L(G)的特征值为μ1(G)≥μ2(G)≥…≥μn-1(G)≥μn(G)=0,最大特征值μ1(G)称为图G的Laplacian谱半径;次小特征值μn-1也称作图G的代数连通度.本文讨论了树的L(G)的最大与次小特征值和μ1(G)+μn-1(G)的上界,得到几个有意义的结论.  相似文献   

15.
令T(n,i)表示顶点数为n,且匹配数为i的所有树的集合,研究了T(4n-1,2n-1)中哪些树的第二个最大特征值等于√1/2[n+1+√(n+1)2-8]的一个猜想.此外,还进一步得到了T(4n-1,2n-1)中树的第二个最大特征值的3个新的上界,并且确定了达到上界的所有的树.  相似文献   

16.
给出了图L(d,1,1)-标号的一般性质. 对一般图G, 给出了构造L(d,1,1)-标号的一个算法, 证明了λd,1,1(G)≤Δ32+dΔ. 对最大度Δ的树T, 证明了d+Δ-1≤λd,1,1(T)≤d+2Δ-2, 并且式中的上界与下界都是可达的. 此外, 对于两类特殊的树图: 拟正则树TΔ及正则毛毛虫Catn, 给出了确切的L(d,1,1)-标号数, 其中d≥2.  相似文献   

17.
在无界区域上考虑了如下具有线性记忆项的半线性耗散波动方程的整体吸引子的维数估计 (utt + ±ut ? k(0)á(x)¢u ?R10 k0(s)á(x)¢u(t ? s)ds + ?f(u) = h(x); (x; t) 2 RN £ R+; u(x; t) = u0(x; t); ut(x; 0) = @tu0(x; 0); x 2 RN; t · 0: 其中N ? 3, ± > 0, 并á(x)?1 =: g(x) 2 LN=2(RN)TL1(RN). 为了克服在无界区域中与微分算子á(x)¢的非紧性有关的困难, 引入了能量空间X0 = D1;2(RN) £ L2 g(RN) £L21(R+;D1;2(RN)). Hausdorff维数维数和分形维数的估计是根据特征方程?á(x)¢u =au; x 2 RN的特征值a 分布的渐近估计得出的.  相似文献   

18.
具正负系数的二阶非线性中立型差分方程正解的存在性   总被引:1,自引:0,他引:1  
研究了一类具有正负系数的二阶非线性中立型时滞差分方程△2[x(n)+px(n-τ)]+Q(n)f(x(n-σ))-R(n)g(x(n-δ))=0(*).在允许αQ(n)-R(n)≥0不成立的条件下,获得了方程(*)存在正解的一些新的充分条件,并给出了说明定理应用的例子,所得结论推广和改进了现有文献中的一系列结果.  相似文献   

19.
通常汉诺塔问题只带三根杆,当圆盘数为n时,最优移动次数为T3(n)=2n-1.对于带4杆的汉诺塔问题,最优移动次数满足关系T4(n)=2T4(m)+T3(n-m),其中m=arglmin{2T4(l)+T3(n-l)}依赖于n.对于正数整k,当k(k-1)/2+1≤n≤k(k+1)/2,n=k(k-1)/2+l时,T4(n)=(l+k-2)2k-1+1.特别,T4(sk)=2T4(sk-1)+T3(k),其中s0=0,sk=sk-1+k(k≥1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号