首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Secondary palate formation is a complex process that is frequently disturbed in mammals, resulting in the birth defect cleft palate. Gene targeting has identified components of cytokine/growth factor signalling systems such as Tgf-alpha/Egfr, Eph receptors B2 and B3 (Ephb2 and Ephb3, respectively), Tgf-beta2, Tgf-beta3 and activin-betaA (ref. 3) as regulators of secondary palate development. Here we demonstrate that the mouse orphan receptor 'related to tyrosine kinases' (Ryk) is essential for normal development and morphogenesis of craniofacial structures including the secondary palate. Ryk belongs to a subclass of catalytically inactive, but otherwise distantly related, receptor protein tyrosine kinases (RTKs). Mice homozygous for a null allele of Ryk have a distinctive craniofacial appearance, shortened limbs and postnatal mortality due to feeding and respiratory complications associated with a complete cleft of the secondary palate. Consistent with cleft palate phenocopy in Ephb2/Ephb3-deficient mice and the role of a Drosophila melanogaster Ryk orthologue, Derailed, in the transduction of repulsive axon pathfinding cues, our biochemical data implicate Ryk in signalling mediated by Eph receptors and the cell-junction-associated Af-6 (also known as Afadin). Our findings highlight the importance of signal crosstalk between members of different RTK subfamilies.  相似文献   

3.
4.
The secreted polypeptide noggin (encoded by the Nog gene) binds and inactivates members of the transforming growth factor beta superfamily of signalling proteins (TGFbeta-FMs), such as BMP4 (ref. 1). By diffusing through extracellular matrices more efficiently than TGFbeta-FMs, noggin may have a principal role in creating morphogenic gradients. During mouse embryogenesis, Nog is expressed at multiple sites, including developing bones. Nog-/- mice die at birth from multiple defects that include bony fusion of the appendicular skeleton. We have identified five dominant human NOG mutations in unrelated families segregating proximal symphalangism (SYM1; OMIM 185800) and a de novo mutation in a patient with unaffected parents. We also found a dominant NOG mutation in a family segregating multiple synostoses syndrome (SYNS1; OMIM 186500); both SYM1 and SYNS1 have multiple joint fusion as their principal feature. All seven NOG mutations alter evolutionarily conserved amino acid residues. The findings reported here confirm that NOG is essential for joint formation and suggest that NOG requirements during skeletogenesis differ between species and between specific skeletal elements within species.  相似文献   

5.
The activins (dimers of betaA or betaB subunits, encoded by the genes Inhba and Inhbb, respectively) are TGF-beta superfamily members that have roles in reproduction and development. Whereas mice homozygous for the Inhba-null allele demonstrate disruption of whisker, palate and tooth development, leading to neonatal lethality, homozygous Inhbb-null mice are viable, fertile and have eye defects. To determine if these phenotypes were due to spatiotemporal expression differences of the ligands or disruption of specific ligand-receptor interactions, we replaced the region of Inhba encoding the mature protein with Inhbb, creating the allele Inhbatm2Zuk (hereafter designated InhbaBK). Although the craniofacial phenotypes of the Inhba-null mutation were rescued by the InhbaBK allele, somatic, testicular, genital and hair growth were grossly affected and influenced by the dosage and bioactivity of the allele. Thus, functional compensation within the TGF-beta superfamily can occur if the replacement gene is expressed appropriately. The novel phenotypes in these mice further illustrate the usefulness of insertion strategies for defining protein function.  相似文献   

6.
7.
The c-kit-encoded transmembrane tyrosine kinase receptor for stem cell factor (Kit/SCF-R) is required for normal haematopoiesis, melanogenesis and gametogenesis. However, the roles of individual Kit/SCF-R-induced signalling pathways in the control of developmental processes in the intact animal are completely unknown. To examine the function of SCF-induced phosphatidylinositol (PI) 3'-kinase activation in vivo, we employed the Cre-loxP system to mutate the codon for Tyr719, the PI 3'-kinase binding site in Kit/SCF-R, to Phe in the genome of mice by homologous recombination. Homozygous (Y719F/Y719F) mutant mice are viable. The mutation completely disrupted PI 3'-kinase binding to Kit/SCF-R and reduced SCF-induced PI 3'-kinase-dependent activation of Akt by 90%. The mutation induced a gender- and tissue-specific defect. Although there are no haematopoietic or pigmentation defects in homozygous mutant mice, males are sterile due to a block in spermatogenesis, with initially decreased proliferation and subsequent extensive apoptosis occurring at the spermatogonial stem-cell level. In contrast, female homozygotes are fully fertile. This is the first report so far demonstrating the role of an individual signalling pathway downstream of Kit/SCF-R in the intact animal. It provides the first in vivo model for male sterility caused by a discrete signalling pathway defect affecting early germ cells.  相似文献   

8.
NK cells are lymphocytes without a specific receptor for antigen, like T and B cells. NK cells are innate immune cells displaying cytotoxic activity through natural or antibody dependent cell cytotoxicity. They also produce cytokines and chemokines critical to cellular cooperation. These functions are regulated by a balance between activating and inhibitory receptors. Natural Killer cell Receptors recognize mainly CMH class I molecules.NK cell cytotoxicity is usually inhibited by the recognition of class I molecules on the target cell by these inhibitory receptors. Another group of transmembrane proteins are Natural Cytotoxicity Receptors. These are activating receptors. As some activating NKR receptors they recognize ligands on tumour or virus-infected cells leading to the activation of cytotoxicity.A better knowledge of these ligands could lead in the future to the use of NK cells as cellular therapy against tumor.  相似文献   

9.
Weil CF  Kunze R 《Nature genetics》2000,26(2):187-190
Excision by transposons is associated with chromosome breaks; generally, host-cell proteins repair this damage, often introducing mutations. Many transposons also use host proteins in the transposition mechanism or in regulation. Transposition in systems lacking host factors that influence the behaviour of these transpositions is useful in determining what those factors are and how they work. In addition, features of transposition and regulation intrinsic to the element itself can be determined. Maize Activator/Dissociation (Ac/Ds) elements transpose in a wide variety of heterologous plants, but their characteristics in these other systems differ from those in maize, including their response to increasing genetic dosage and the types of repair products recovered following excision. Two Arabidopsis thaliana mutants (iae1 and iae2) show increased Ac transposition frequencies. These mutants, and the differences mentioned above, suggest the involvement of host proteins in Ac/Ds activity and potential differences between these proteins among plant species. Here we report that Ac/Ds elements, members of the hAT (hobo, Ac, Tam3) superfamily, transpose in the yeast Saccharomyces cerevisiae, an organism lacking class II ('cut and paste') transposons. This demonstrates that plant-specific proteins are not essential for Ac/Ds transposition. The yeast system is valuable for dissecting the Ac/Ds transposition mechanism and identifying host factors that can influence transposition and the repair of DNA damage induced by Ac/Ds. Mutations caused by Ds excision in yeast suggest formation of a DNA-hairpin intermediate, and reinsertions occur throughout the genome with a frequency similar to that in plants. The high proportion of Ac/Ds reinsertions also makes this system an in vivo mutagenesis and reverse genetics tool in yeast and, presumably, other eukaryotic systems.  相似文献   

10.
All vertebrates display a characteristic asymmetry of internal organs with the cardiac apex, stomach and spleen towards the left, and the liver and gall bladder on the right. Left-right (L-R) axis abnormalities or laterality defects are common in humans (1 in 8,500 live births). Several genes (such as Nodal, Ebaf and Pitx2) have been implicated in L-R organ positioning in model organisms. In humans, relatively few genes have been associated with a small percentage of human situs defects. These include ZIC3 (ref. 5), LEFTB (formerly LEFTY2; ref. 6) and ACVR2B (encoding activin receptor IIB; ref. 7). The EGF-CFC genes, mouse Cfc1 (encoding the Cryptic protein; ref. 9) and zebrafish one-eyed pinhead (oep; refs 10, 11) are essential for the establishment of the L-R axis. EGF-CFC proteins act as co-factors for Nodal-related signals, which have also been implicated in L-R axis development. Here we identify loss-of-function mutations in human CFC1 (encoding the CRYPTIC protein) in patients with heterotaxic phenotypes (randomized organ positioning). The mutant proteins have aberrant cellular localization in transfected cells and are functionally defective in a zebrafish oep-mutant rescue assay. Our findings indicate that the essential role of EGF-CFC genes and Nodal signalling in left-right axis formation is conserved from fish to humans. Moreover, our results support a role for environmental and/or genetic modifiers in determining the ultimate phenotype in humans.  相似文献   

11.
To rapidly identify genes required for early vertebrate development, we are carrying out a large-scale, insertional mutagenesis screen in zebrafish, using mouse retroviral vectors as the mutagen. We will obtain mutations in 450 to 500 different genes--roughly 20% of the genes that can be mutated to produce a visible embryonic phenotype in this species--and will clone the majority of the mutated alleles. So far, we have isolated more than 500 insertional mutants. Here we describe the first 75 insertional mutants for which the disrupted genes have been identified. In agreement with chemical mutagenesis screens, approximately one-third of the mutants have developmental defects that affect primarily one or a small number of organs, body shape or swimming behavior; the rest of the mutants show more widespread or pleiotropic abnormalities. Many of the genes we identified have not been previously assigned a biological role in vivo. Roughly 20% of the mutants result from lesions in genes for which the biochemical and cellular function of the proteins they encode cannot be deduced with confidence, if at all, from their predicted amino-acid sequences. All of the genes have either orthologs or clearly related genes in human. These results provide an unbiased view of the genetic construction kit for a vertebrate embryo, reveal the diversity of genes required for vertebrate development and suggest that hundreds of genes of unknown biochemical function essential for vertebrate development have yet to be identified.  相似文献   

12.
Syndecan-1 is required for Wnt-1-induced mammary tumorigenesis in mice   总被引:17,自引:0,他引:17  
Syndecan-1 is a cell-surface, heparan-sulphate proteoglycan (HSPG) predominantly expressed by epithelial cells. It binds specifically to many proteins, including oncoproteins. For example, it induces the assembly of a signalling complex between FGF ligands and their cognate receptors. But so far there has been no direct evidence that this proteoglycan contributes to tumorigenesis. Here we have examined the role of syndecan-1 (encoded by Sdc1) during mammary tumour formation in response to the ectopic expression of the proto-oncogene Wnt1. We crossed syndecan-1-deficient mice with transgenic mice that express Wnt1 in mammary gland (TgN(Wnt-1)1Hev; ref. 2). Ectopic Wnt-1 expression induces generalized mammary hyperplasia, followed by the development of solitary tumours (median time 22 weeks). We show that in Sdc1-/- mice, Wnt-1-induced hyperplasia in virgin mammary gland was reduced by 70%, indicating that the Wnt-1 signalling pathway was inhibited. Of the 39 tumours that developed in a test cohort of mice, only 1 evolved in the Sdc1-/- background. In addition, we show that soluble syndecan-1 ectodomain purified from mouse mammary epithelial cells stimulates the activity of a Wnt-1 homologue in a tissue culture assay. Our results provide both genetic and biochemical evidence that syndecan-1 can modulate Wnt signalling, and is critical for Wnt-1-induced tumorigenesis of the mouse mammary gland.  相似文献   

13.
Mice mutant for Egfr and Shp2 have defective cardiac semilunar valvulogenesis   总被引:18,自引:0,他引:18  
Atrioventricular and semilunar valve abnormalities are common birth defects, but how cardiac valvulogenesis is directed remains largely unknown. During studies of genetic interaction between Egfr, encoding the epidermal growth factor receptor, and Ptpn11, encoding the protein-tyrosine-phosphatase Shp2, we discovered that Egfr is required for semilunar, but not atrioventricular, valve development. Although unnoticed in earlier studies, mice homozygous for the hypomorphic Egfr allele waved-2 (Egfrwa2/wa2) exhibit semilunar valve enlargement resulting from over-abundant mesenchymal cells. Egfr-/- mice (CD1 background) have similar defects. The penetrance and severity of the defects in Egfrwa2/wa2 mice are enhanced by heterozygosity for a targeted mutation of exon 2 of Ptpn11 (ref. 3). Compound (Egfrwa2/wa2:Ptpn11+/-) mutant mice also show premature lethality. Electrocardiography, echocardiography and haemodynamic analyses showed that affected mice develop aortic stenosis and regurgitation. Our results identify the Egfr and Shp2 as components of a growth-factor signalling pathway required specifically for semilunar valvulogenesis, support the hypothesis that Shp2 is required for Egfr signalling in vivo, and provide an animal model for aortic valve disease.  相似文献   

14.
15.
G protein-coupled receptors (GPCRs) participate in the most common signal transduction system at the plasma membrane. The wide distribution of heterotrimeric G proteins in the internal membranes suggests that a similar signalling mechanism might also be used at intracellular locations. We provide here structural evidence that the protein product of the ocular albinism type 1 gene (OA1), a pigment cell-specific integral membrane glycoprotein, represents a novel member of the GPCR superfamily and demonstrate that it binds heterotrimeric G proteins. Moreover, we show that OA1 is not found at the plasma membrane, being instead targeted to specialized intracellular organelles, the melanosomes. Our data suggest that OA1 represents the first example of an exclusively intracellular GPCR and support the hypothesis that GPCR-mediated signal transduction systems also operate at the internal membranes in mammalian cells.  相似文献   

16.
Germline gain-of-function mutations in SOS1 cause Noonan syndrome   总被引:1,自引:0,他引:1  
Noonan syndrome, the most common single-gene cause of congenital heart disease, is characterized by short stature, characteristic facies, learning problems and leukemia predisposition. Gain-of-function mutations in PTPN11, encoding the tyrosine phosphatase SHP2, cause approximately 50% of Noonan syndrome cases. SHP2 is required for RAS-ERK MAP kinase (MAPK) cascade activation, and Noonan syndrome mutants enhance ERK activation ex vivo and in mice. KRAS mutations account for <5% of cases of Noonan syndrome, but the gene(s) responsible for the remainder are unknown. We identified missense mutations in SOS1, which encodes an essential RAS guanine nucleotide-exchange factor (RAS-GEF), in approximately 20% of cases of Noonan syndrome without PTPN11 mutation. The prevalence of specific cardiac defects differs in SOS1 mutation-associated Noonan syndrome. Noonan syndrome-associated SOS1 mutations are hypermorphs encoding products that enhance RAS and ERK activation. Our results identify SOS1 mutants as a major cause of Noonan syndrome, representing the first example of activating GEF mutations associated with human disease and providing new insights into RAS-GEF regulation.  相似文献   

17.
18.
Hekimi S 《Nature genetics》2006,38(9):985-991
Each animal species displays a specific life span, rate of aging and pattern of development of age-dependent diseases. The genetic bases of these related features are being studied experimentally in invertebrate and vertebrate model systems as well as in humans through medical records. Three types of mutants are being analyzed: (i) short-lived mutants that are prone to age-dependent diseases and might be models of accelerated aging; (ii) mutants that show overt molecular defects but that do not live shorter lives than controls, and can be used to test specific theories about the molecular causes of aging and age-dependent diseases; and (iii) long-lived mutants that might advance the understanding of the molecular physiology of slow-aging animals and aid the discovery of molecular targets that could be used to manipulate rates of aging to benefit human health. Here, I analyze some of what we know today and discuss what we should try to find out in the future to understand the aging phenomenon.  相似文献   

19.
Mouse embryos deficient in Gata3 die by 11 days post coitum (d.p.c.) from pathology of undetermined origin. We recently showed that Gata3-directed lacZ expression of a 625-kb Gata3 YAC transgene in mice mimics endogenous Gata3 expression, except in thymus and the sympathoadrenal system. As this transgene failed to overcome embryonic lethality (unpublished data and ref. 3) in Gata3-/- mice, we hypothesized that a neuroendocrine deficiency in the sympathetic nervous system (SNS) might cause embryonic lethality in these mutants. We find here that null mutation of Gata3 leads to reduced accumulation of Th (encoding tyrosine hydroxylase, Th) and Dbh (dopamine beta-hydroxylase, Dbh) mRNA, whereas several other SNS genes are unaffected. We show that Th and Dbh deficiencies lead to reduced noradrenaline in the SNS, and that noradrenaline deficiency is a proximal cause of death in mutants by feeding catechol intermediates to pregnant dams, thereby partially averting Gata3 mutation-induced lethality. These older, pharmacologically rescued mutants revealed abnormalities that previously could not be detected in untreated mutants. These late embryonic defects include renal hypoplasia and developmental defects in structures derived from cephalic neural crest cells. Thus we have shown that Gata3 has a role in the differentiation of multiple cell lineages during embryogenesis.  相似文献   

20.
Interleukin-8 (IL-8) is the prototype for a family of at least eight neutrophil chemoattractants whose genes map to human chromosome 4q13-q21. Two human IL-8 receptors, IL8RA and IL8RB, are known from cDNA cloning; IL8RA is a promiscuous receptor for at least two other related ligands, GRO alpha and NAP-2. We now report cloning of the genes for IL8RA, IL8RB and a recently inactivated pseudogene of receptor A (IL8RAP). These form a cluster of only three genes in the superfamily of G protein-coupled receptors (GPCRs) and map to 2q34-q35. The coevolutionary diversity displayed by the IL-8 ligand-receptor complex--ligand promiscuity for IL-8, receptor promiscuity for IL8RA, gene duplication for both ligands and receptors and gene extinction in the case of IL8RAP--is unprecedented for the GPCR superfamily.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号