首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
From a random insertion mutant library of Synechocystis sp. PCC 6803, a mutant defective in photoautotrophic growth was obtained. The interrupted gene was identified to be slr2094 (fbpl), which encodes the fructose-1,6-biphosphatase (FBPase)/sedoheptulose-1,7-biphosphatase (SBPase) bifunctional enzyme (F-I). Two other independently constructed slr2094 mutants showed an identical phenotype. The FBPase activity was found to be virtually lacking in an slr2094 mutant, which was sensitive to light under mixotrophic growth conditions. These results indicate that slr2094 is the only active FBPase-encoding gene in this cyanobacterium. Inactivation of photosystem II by interrupting psbB in slr2094 mutant alleviated the sensitiveness to light. This report provides the direct genetic evidence for the essential role of F-I in the photosynthesis of Synechocystis sp. PCC 6803.  相似文献   

2.
采用封闭式光生物反应器进行了蓝藻基因工程常用宿主系统集胞藻Synechocystis sp. PCC 6803的混合营养培养,并与光自养培养进行了比较,在两种培养方式下,集胞藻6803的饱和光强基本相同,都为5000lx,当入射光强为5000lx,初始葡萄糖浓度为1.74g/L时,混合营养生长在葡萄糖消耗完(69.5h)时的藻细胞密度为1.36g/L,叶绿素浓度为20.08mg/L,能量得率为16.7%,分别为同期光自养生长的3.8倍,2.3倍和2.6倍,这表明封闭式光生物反应器混合营养培养方式在促进集胞藻6803生长和光合色素合成及提高培养过程能量得率等方面都有显著作用。  相似文献   

3.
From a random insertion mutant library of Synechocystis sp. PCC 6803, a mutant defective in photoautotrophic growth was obtained. The interrupted gene was identified to be slr2094 (fbp1), which encodes the fructose-1,6-biphosphatase (FBPase) / sedoheptulose-1,7-biphosphatase (SBPase) bifunctional enzyme (F-I). Two other independently constructed slr2094 mutants showed an identical phenotype. The FBPase activity was found to be virtually lacked in slr2094 mutant, which was sensitive to light under mixotrophic growth conditions. These results indicate that slr2094 is the only active FBPase-encoding gene in this cyanobacterium. Inactivation of photosystem II by interrupting psbB in slr2094 mutant alleviated the sensitiveness to light. This report provides the direct genetic evidence for the essential role of F-I in the photosynthesis of Synechocystis sp. PCC 6803.  相似文献   

4.
From a random insertion mutant library of Synechocystis sp. PCC 6803, a mutant defective in photoautotrophic growth was obtained. The interrupted gene was identified to be slr2094 (fbp1), which encodes the fructose-1,6-biphosphatase (FBPase) / sedoheptulose-1,7-biphosphatase (SBPase) bifunctional enzyme (F-I). Two other independently constructed slr2094 mutants showed an identical phenotype. The FBPase activity was found to be virtually lacked in slr2094 mutant, which was sensitive to light under mixotrophic growth conditions. These results indicate that slr2094 is the only active FBPase-encoding gene in this cyanobacterium. Inactivation of photosystem II by interrupting psbB in slr2094 mutant alleviated the sensitiveness to light. This report provides the direct genetic evidence for the essential role of F-I in the photosynthesis of Synechocystis sp. PCC 6803.  相似文献   

5.
镉对集胞藻PCC6803生长的影响   总被引:2,自引:0,他引:2  
以集胞藻为研究材料,研究不同浓度的Cd2 处理对集胞藻生长的影响.研究发现:低浓度的Cd2 处理(0~0.1 m g/L),能够促进集胞藻的生长,表现为叶绿素、可溶性糖、蛋白质含量随着浓度的增大而增大;当Cd2 浓度进一步增加时,Cd2 开始抑制集胞藻的生长,表现为叶绿素、可溶性糖、蛋白质含量减小,Cd2 浓度达到1.0 m g/L则完全抑制集胞藻的生长,无任何产物累积.  相似文献   

6.
Introduction Rapid adaptation to environmental challenges is vitally important for bacterial survival and growth. One way in which bacteria control their response to changing environmental conditions is through the mechanism of two-component signal transd…  相似文献   

7.
To biosynthesize fluorescent Spirulina platensis (Sp)β -phycocyanin (PC) in Escherichia coli, a BLASTP search for homologs of the cpeS gene, a chromophore lyase, was performed against the Synechocystis sp. PCC 6803 (S6) proteome. A highly homologous gene, slr2049, was obtained from the S6 genome. Sites 82 and 153 in -phycocyanin of Sp were modified by site-directed muta- genesis. Two recombinant expression vectors were constructed and transformed into E. coli BL21: (i) pCDF-cpcB (C153A)- slr2049-sll0583-ho1-pcyA; and (ii) pCDF-cpcB (C82I)-slr2049-sll0583-ho1-pcyA. Lyases encoded by the genes slr2049 and sll0583 catalyzed the linking of Sp 82β -PC to phycocyanobilin (PCB), and fluorescent CpcB (C153A)-PCB was generated. We present a strategy for the co-expression of multiple genes in a single expression vector to identify the function of an unknown gene. Recombinant phycobiliproteins produced on a large scale are promising fluorescent tags for diagnostics and pharmacology.  相似文献   

8.
IntroductionIncyanobacteria ,two pathwaysof proto chlorophyllide (Pchlide)reductionandchlorophyll(Chl)biosynthesisappeartoexist:oneislight dependent ,theotherislight independent[1,2 ] .Atleastthree polypeptidesareinvolvedinthelight independentpathway .Oneofthesep…  相似文献   

9.
Phosphohexomutases catalyze the interconversion between hexose-6-phosphate and hexose-l-phosphate and play important roles in polysaccharide synthesis. In Synechocystis sp. PCC 6803, sl10726 is predicted to encode PGM (phosphoglucomutase), slr1334 is predicted to encode a PGM/PMM (phosphomannomutase) bifunction enzyme. In comparison to the wild type, a sllO726-null mutant showed 3.4% PGM activity but 45%-69% glycogen content. Down-regulation of slr1334, an essential gene, by using a copper regulated promoter further decreased the PGM activity in the sllO726::Kmr PpetE-slr1334 double mutant to 0.3% of the wild type level. However, the glycogen content was not further decreased in parallel. In vitro, recombinant Sl10726 or S1r1334 showed predicted enzyme activities. Our results indicate that a relatively high level of glycogen can be maintained in Synechocystis mutants with low levels of PGM activity. The high PGM activity in the cyanobacterium may be required for turnover of glycogen or synthesis of other polysaccharides or oligosaccharides.  相似文献   

10.
The mechanism of state transition in blue-green alga Synechocystis PCC 6803 was investigated by using modulated fluorescence. NaF, an inhibitor of phosphatase, did not inhibit state Ⅱ to state Ⅰ transition . Rotenone, a specific inhibitor of NAD(P)H ubiquinone reductase, stimulated transition from state Ⅱ to state I in dark. The results suggest that state transition in blue-green alga Synechocystis PCC 6803 is controlled by redox state of plastiquinone pool, but not by the phosphorylation of thylakoid membrane proteins.  相似文献   

11.
IntroductionSalt stress is one of the main detrimental factors inthe environment that limit the growth andproductivity of plants.Salt stress causessignificant decreases in photosynthetic activity,such as the electron transport[1,2 ] ,but themechanisms by which salt stress inhibitsphotosynthesis remain poorly understood[3] . Cyanobacteria are prokaryotes that performoxygenic photosynthesis using a photosyntheticapparatus similar to that in the chloroplasts ofgreen algae and higher plants[4 ] .…  相似文献   

12.
从集胞藻(Synechocystis sp.)PCC6803提取总DNA,利用PCR扩增目的基因sll0853,构建重组T-0853克隆载体和pET-0853原核表达载体.为了提高sll0853在大肠杆菌E.coli BL21(DE3)中的表达量,通过改变诱导温度、诱导时间及诱导剂浓度等条件对表达量产生影响,以SDS-PAGE电泳分析证明sll0853基因蛋白表达的最佳条件.结果表明:目的蛋白在28℃、0.2mmol/L IPTG、诱导6h表达量分别达高峰.通过生物信息学软件预测基因sll0853可能具有裂合酶的功能.  相似文献   

13.
In Synechocystis sp. PCC 6803, gene sll1384 encodes a protein with a DnaJ domain at its N-terminal portion and a TPR domain at the C-terminal portion. An sll1384 mutant shows no difference from the wild type in adaptation to different temperatures, but almost completely loses its capability of phototactic movement. After complementation with sll1384, the mutant regains the phototaxis. As shown with electron microscopy, on the cell surface, mutant cells have pill that appear to be the same as that of the wild type. Also, the transformation efficiency remains unchanged in the mutant. It is postulated that Sll1384 regulates phototaxis of Synechocystis through protein-protein interaction. It is the first DnaJ-like protein gene identified in a cyanobacterium for a role in phototaxis.  相似文献   

14.
转基因鱼腥藻7120光异养生长的研究   总被引:1,自引:0,他引:1  
研究了不同有机碳源对转基因鱼腥藻7120生长的影响,在此基础上进行了光异养条件的优化,并研究了外源添加剂L-精氨酸、生长激素2,4-D与KT对藻细胞生长的影响。结果表明:蔗糖和葡萄糖能促进藻体的生长;最优碳氮源组合为葡萄糖6g/L、NaNO31.5g/L,经高压灭菌;L-精氨酸不支持藻体的光异养生长;一定含量的2,4-D与KT能促进藻体在光异养条件下的后期生长。  相似文献   

15.
应用PCR技术分别克隆了集胞藻6803、鲍曼不动杆菌和大肠杆菌的磷酸烯醇式丙酮酸羧化酶(PEPC)基因,构建重组大肠杆菌。SDS-PAGE凝胶电泳结果显示,来自集胞藻6803和大肠杆菌的PEPC实现了高效表达,而来自鲍曼不动杆菌的PEPC表达较弱,提示密码子偏好性的影响。前两菌提前进入对数生长期,来自鲍曼不动杆菌PEPC工程菌却延迟生长,但这3种重组菌发酵24h后的生物量与对照菌几乎相同。如果排除质粒复制造成的代谢负荷,过表达PEPC促进了宿主菌的生长,推测是因为重排了代谢流量。  相似文献   

16.
IntroductionPolyhydroxyalkanoates(PHAs)areafamilyofbiopolyestersynthesizedbymanybacteria[1,2 ] .AmongPHAs ,polyhydroxybutyrateorPHBisthemostcommonmember[3] .AttemptshavebeenmadetodevelopcommercialfermentationprocessesfortheproductionofPHAs[4 7] .Biopol,acommerci…  相似文献   

17.
以廉价的工业副产物醋酸及乳酸为碳源,对产PHB重组大肠杆菌进行培养,考察醋酸及乳酸的添加对重组大肠杆菌生长及PHB产量的影响。将来自Cupriavidusnecator的PHB合成操纵子phaCAB基因簇克隆至pBAD载体,得到产PHB菌株BL21_pBAD_phaCAB,以阿拉伯糖为诱导剂,在大肠杆菌中进行重组表达。分别使用LB及M9培养基,对重组菌株BL21_pBAD_phaCAB进行培养,研究其生长速度及PHB产量,探索产PHB重组大肠杆菌最适培养基。以添加0.04 g/L乳酸、1.2 g/L乳酸、0.02 g/L醋酸、0.6 g/L醋酸、0.04 g/L乳酸+0.02g/L醋酸、1.2g/L乳酸+0.4g/L醋酸的M9培养基(均含2 g/L葡萄糖)为实验组,以M9培养基(含2g/L葡萄糖)为对照组,考察醋酸及乳酸的添加对重组大肠杆菌生长及PHB产量的影响。分别取第6,12,24和36小时的培养液,分析其葡萄糖、醋酸及乳酸含量的变化。结果表明,低氮型M9培养基更适合产PHB重组大肠杆菌在低糖培养环境中生长。在葡萄糖消耗殆尽后,大肠杆菌能够以醋酸及乳酸为碳源进行代谢,因此在培养基中...  相似文献   

18.
19.
A plasmid (pTU9) containing the lambda (λ) phage lysis genes S(-)RRz and the biosynthetic genes phbCAB of poly-β-hydroxybutyrate (PHB) was constructed and transformed into E.coli JM109. Cultured in Luria-Bertani (LB) medium with 20 g/L glucose, E.coli JM109 (pTU9) could accumulate PHB in cells up to 40% (g PHB per g dry cells). A chelating agent EDTA was applied to induce a complete cell lysis and PHB granules were released. This method has a potential application in PHB separation.  相似文献   

20.
优良的发酵培养基可明显提高PHB的产量和降低其生产成本。本研究借助Design Expect 8.0.6软件,采用Plackett-Burman试验设计法及响应面法,对二元菌混合发酵产PHB的培养基成分进行了优化。首先利用Plackett-Burman试验设计筛选出影响PHB产量的主要因素,实验结果表明,蛋白胨、Mg SO4·7H2O和可溶性淀粉的浓度对PHB的产量贡献较大;然后通过最陡爬坡实验逼近最大响应区域;最后利用Box-Behnken试验设计及响应面分析法进行回归,确定了3个主要因素的最佳浓度:蛋白胨17 g/L,Mg SO4·7H2O 0.4 g/L,可溶性淀粉39 g/L。在此优化条件下PHB产量的实验值达到7.668 g/L,与模型理论值(7.780 g/L)非常接近,是单因素试验PHB产量最大值(3.566 g/L)的2.15倍。上述研究结果为后续放大试验提供了理论基础,对PHB的工业化生产具有重要的参考价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号