首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Changes in iron supply to oceanic plankton are thought to have a significant effect on concentrations of atmospheric carbon dioxide by altering rates of carbon sequestration, a theory known as the 'iron hypothesis'. For this reason, it is important to understand the response of pelagic biota to increased iron supply. Here we report the results of a mesoscale iron fertilization experiment in the polar Southern Ocean, where the potential to sequester iron-elevated algal carbon is probably greatest. Increased iron supply led to elevated phytoplankton biomass and rates of photosynthesis in surface waters, causing a large drawdown of carbon dioxide and macronutrients, and elevated dimethyl sulphide levels after 13 days. This drawdown was mostly due to the proliferation of diatom stocks. But downward export of biogenic carbon was not increased. Moreover, satellite observations of this massive bloom 30 days later, suggest that a sufficient proportion of the added iron was retained in surface waters. Our findings demonstrate that iron supply controls phytoplankton growth and community composition during summer in these polar Southern Ocean waters, but the fate of algal carbon remains unknown and depends on the interplay between the processes controlling export, remineralisation and timescales of water mass subduction.  相似文献   

2.
The availability of iron limits primary productivity and the associated uptake of carbon over large areas of the ocean. Iron thus plays an important role in the carbon cycle, and changes in its supply to the surface ocean may have had a significant effect on atmospheric carbon dioxide concentrations over glacial-interglacial cycles. To date, the role of iron in carbon cycling has largely been assessed using short-term iron-addition experiments. It is difficult, however, to reliably assess the magnitude of carbon export to the ocean interior using such methods, and the short observational periods preclude extrapolation of the results to longer timescales. Here we report observations of a phytoplankton bloom induced by natural iron fertilization--an approach that offers the opportunity to overcome some of the limitations of short-term experiments. We found that a large phytoplankton bloom over the Kerguelen plateau in the Southern Ocean was sustained by the supply of iron and major nutrients to surface waters from iron-rich deep water below. The efficiency of fertilization, defined as the ratio of the carbon export to the amount of iron supplied, was at least ten times higher than previous estimates from short-term blooms induced by iron-addition experiments. This result sheds new light on the effect of long-term fertilization by iron and macronutrients on carbon sequestration, suggesting that changes in iron supply from below--as invoked in some palaeoclimatic and future climate change scenarios--may have a more significant effect on atmospheric carbon dioxide concentrations than previously thought.  相似文献   

3.
Deep carbon export from a Southern Ocean iron-fertilized diatom bloom   总被引:1,自引:0,他引:1  
Fertilization of the ocean by adding iron compounds has induced diatom-dominated phytoplankton blooms accompanied by considerable carbon dioxide drawdown in the ocean surface layer. However, because the fate of bloom biomass could not be adequately resolved in these experiments, the timescales of carbon sequestration from the atmosphere are uncertain. Here we report the results of a five-week experiment carried out in the closed core of a vertically coherent, mesoscale eddy of the Antarctic Circumpolar Current, during which we tracked sinking particles from the surface to the deep-sea floor. A large diatom bloom peaked in the fourth week after fertilization. This was followed by mass mortality of several diatom species that formed rapidly sinking, mucilaginous aggregates of entangled cells and chains. Taken together, multiple lines of evidence-although each with important uncertainties-lead us to conclude that at least half the bloom biomass sank far below a depth of 1,000 metres and that a substantial portion is likely to have reached the sea floor. Thus, iron-fertilized diatom blooms may sequester carbon for timescales of centuries in ocean bottom water and for longer in the sediments.  相似文献   

4.
The deposition of atmospheric dust into the ocean has varied considerably over geological time. Because some of the trace metals contained in dust are essential plant nutrients which can limit phytoplankton growth in parts of the ocean, it has been suggested that variations in dust supply to the surface ocean might influence primary production. Whereas the role of trace metal availability in photosynthetic carbon fixation has received considerable attention, its effect on biogenic calcification is virtually unknown. The production of both particulate organic carbon and calcium carbonate (CaCO3) drives the ocean's biological carbon pump. The ratio of particulate organic carbon to CaCO3 export, the so-called rain ratio, is one of the factors determining CO2 sequestration in the deep ocean. Here we investigate the influence of the essential trace metals iron and zinc on the prominent CaCO3-producing microalga Emiliania huxleyi. We show that whereas at low iron concentrations growth and calcification are equally reduced, low zinc concentrations result in a de-coupling of the two processes. Despite the reduced growth rate of zinc-limited cells, CaCO3 production rates per cell remain unaffected, thus leading to highly calcified cells. These results suggest that changes in dust deposition can affect biogenic calcification in oceanic regions characterized by trace metal limitation, with possible consequences for CO2 partitioning between the atmosphere and the ocean.  相似文献   

5.
The Southern Ocean is very important for the potential sequestration of carbon dioxide in the oceans and is expected to be vulnerable to changes in carbon export forced by anthropogenic climate warming. Annual phytoplankton blooms in seasonal ice zones are highly productive and are thought to contribute significantly to pCO2 drawdown in the Southern Ocean. Diatoms are assumed to be the most important phytoplankton class with respect to export production in the Southern Ocean; however, the colonial prymnesiophyte Phaeocystis antarctica regularly forms huge blooms in seasonal ice zones and coastal Antarctic waters. There is little evidence regarding the fate of carbon produced by P. antarctica in the Southern Ocean, although remineralization in the upper water column has been proposed to be the main pathway in polar waters. Here we present evidence for early and rapid carbon export from P. antarctica blooms to deep water and sediments in the Ross Sea. Carbon sequestration from P. antarctica blooms may influence the carbon cycle in the Southern Ocean, especially if projected climatic changes lead to an alteration in the structure of the phytoplankton community.  相似文献   

6.
Disequilibria between 210Po and 210Pb in the upper water and their potential applications as a proxy of particle export and remineralization were examined in the Southern Ocean (station IV3) and the South China Sea (NS44). 210Po was deficit in surface waters but excessive relative to 210Pb in subsurface waters. Good positive correlation between 210Po and particulate organic carbon (POC) indicated deficits and excess of 210Po resulted from particulate organic matter (POM) export and remineralization respecti...  相似文献   

7.
The formation and sinking of biogenic particles mediate vertical mass fluxes and drive elemental cycling in the ocean. Whereas marine sciences have focused primarily on particle production by phytoplankton growth, particle formation by the assembly of organic macromolecules has almost been neglected. Here we show, by means of a combined experimental and modelling study, that the formation of polysaccharide particles is an important pathway to convert dissolved into particulate organic carbon during phytoplankton blooms, and can be described in terms of aggregation kinetics. Our findings suggest that aggregation processes in the ocean cascade from the molecular scale up to the size of fast-settling particles, and give new insights into the cycling and export of biogeochemical key elements such as carbon, iron and thorium.  相似文献   

8.
The results of time series sediment trap experiments in the South China Sea show that particulate organic carbon (POC) fluxes are influenced by the monsoons. The increase of productivity in the northern South China Sea is mainly due to northeast monsoon while in the central South China Sea the influence of southwest monsoon becomes more prominent. The annual primary production and export production calculated based on POC fluxes are 53.0–63.4 and 10.32–12.93 gC m-2a-1, respectively. The enhancement of POC flux during monsoon period suggest that higher palaeoproductivity or organic carbon accumulation rate in glacial age in the South Chma Sea might be the result of strengthening of the monsoons.  相似文献   

9.
Diatoms are unicellular or chain-forming phytoplankton that use silicon (Si) in cell wall construction. Their survival during periods of apparent nutrient exhaustion enhances carbon sequestration in frontal regions of the northern North Atlantic. These regions may therefore have a more important role in the 'biological pump' than they have previously been attributed, but how this is achieved is unknown. Diatom growth depends on silicate availability, in addition to nitrate and phosphate, but northern Atlantic waters are richer in nitrate than silicate. Following the spring stratification, diatoms are the first phytoplankton to bloom. Once silicate is exhausted, diatom blooms subside in a major export event. Here we show that, with nitrate still available for new production, the diatom bloom is prolonged where there is a periodic supply of new silicate: specifically, diatoms thrive by 'mining' deep-water silicate brought to the surface by an unstable ocean front. The mechanism we present here is not limited to silicate fertilization; similar mechanisms could support nitrate-, phosphate- or iron-limited frontal regions in oceans elsewhere.  相似文献   

10.
The seeding of an expanse of surface waters in the equatorial Pacific Ocean with low concentrations of dissolved iron triggered a massive phytoplankton bloom which consumed large quantities of carbon dioxide and nitrate that these microscopic plants cannot fully utilize under natural conditions. These and other observations provide unequivocal support for the hypothesis that phytoplankton growth in this oceanic region is limited by iron bioavailability.  相似文献   

11.
Diatoms are one of the predominant contributors to global carbon fixation by accounting for over 40% of total oceanic primary production and dominate export production. They play a significant role in marine biogeochemistry cycle. The diatom mat deposits are results of vast diatoms bloom. By analysis of diatom mats in 136°00′--140°00′E, 15°00′--21°00′N, Eastern Philippines Sea, we identified the species of the diatoms as giant Ethmodiscus rex (Wallich) Hendey. AMS 14C dating shows that the sediments rich in diatom mats occurred during 16000--28600 a B.P., which means the bloom mainly occurred during the last glacial period, while there are no diatom mat deposits in other layers. Preliminary analysis indicates that Antarctic Intermediate Water (AAIW) expanded northward and brought silicate-rich water into the area, namely, silicon leakage processes caused the bloom of diatoms. In addition, the increase of iron input is one of the main reasons for the diatom bloom.  相似文献   

12.
Activities of234Th and nutrient concentrations in the upper 500 m water column were measured at a time-series station in the South China Sea over a time span of 12.3 d. Results showed a reduction of dissolved234Th and an overall increase of particulate234Th during the period. Meanwhile, activities of total234Th kept fairly constant, implying rapid transformation of234Th between the dissolved and particulate forms. Vertical profiles of total234Th showed evident deficit of234Th relative to238U in the upper 500 m water column. Using an irreversible steady-state model of thorium scavenging, export fluxes of particulate organic carbon (POC) corresponding to time pointsT 1 andT 2 were estimated to be 46.5 and 13.1 mmolC · m−2 · d−1. It was demonstrated that the estimation of POC export was greatly dependent on the POC/234ThP ratios and the bias caused by the different models of234Th scavenging, however, was considered to be of minor importance.  相似文献   

13.
筼筜湖悬浮物及颗粒有机碳、氮、磷的时空分布   总被引:2,自引:0,他引:2  
2008年12月—2009年11月,在筼筜湖5个站位进行表层海水的采样,研究水体中悬浮物(TSM)、颗粒有机碳(POC)、颗粒氮(PN)和颗粒磷(PP)的时空分布特征及其与叶绿素a(Chl a)之间的关系.结果显示,各站位TSM、POC、PN和PP浓度总体上沿着筼筜湖的水流方向逐渐降低,季节变化明显,大部分在夏季(6—8月)出现高峰;POC和PN之间相关性极显著(R=0.989,n=127),POC和PN与Chl a之间也具有较好的正相关关系,而PP与Chl a之间的相关性不显著,浮游植物碳(Cph)与POC的质量比在各站位有所差异.研究表明,筼筜湖POC和PN来源较为一致,在赤潮爆发期间浮游植物是其主要来源,而PP除浮游植物来源外,其他来源如外源碎屑输入、表层沉积物再悬浮以及浮游动物、细菌和碎屑可能对其含量都有较大影响.  相似文献   

14.
Climate-driven trends in contemporary ocean productivity   总被引:6,自引:0,他引:6  
Contributing roughly half of the biosphere's net primary production (NPP), photosynthesis by oceanic phytoplankton is a vital link in the cycling of carbon between living and inorganic stocks. Each day, more than a hundred million tons of carbon in the form of CO2 are fixed into organic material by these ubiquitous, microscopic plants of the upper ocean, and each day a similar amount of organic carbon is transferred into marine ecosystems by sinking and grazing. The distribution of phytoplankton biomass and NPP is defined by the availability of light and nutrients (nitrogen, phosphate, iron). These growth-limiting factors are in turn regulated by physical processes of ocean circulation, mixed-layer dynamics, upwelling, atmospheric dust deposition, and the solar cycle. Satellite measurements of ocean colour provide a means of quantifying ocean productivity on a global scale and linking its variability to environmental factors. Here we describe global ocean NPP changes detected from space over the past decade. The period is dominated by an initial increase in NPP of 1,930 teragrams of carbon a year (Tg C yr(-1)), followed by a prolonged decrease averaging 190 Tg C yr(-1). These trends are driven by changes occurring in the expansive stratified low-latitude oceans and are tightly coupled to coincident climate variability. This link between the physical environment and ocean biology functions through changes in upper-ocean temperature and stratification, which influence the availability of nutrients for phytoplankton growth. The observed reductions in ocean productivity during the recent post-1999 warming period provide insight on how future climate change can alter marine food webs.  相似文献   

15.
于2007年1、4、7、10月在苏州河、黄浦江4个采样点采集表层水样,分析了颗粒态氨基酸(Particulate Amino Acids, PAA)的组成及含量;并对比分析了北新泾、河南路桥、十六铺和嫩江码头4个站点氨基酸的季节变化特征;结合颗粒有机碳(POC)、颗粒有机氮(PON)及颗粒态氨基酸的构型特征(D和L型)等参数,探讨了该区域颗粒有机氮的来源和降解情况.结果表明:苏州河氨基酸季节变化比黄浦江大;氨基酸降解系数(DI)分析表明研究区域的氨基酸主要来自现场过程和细菌贡献,其中7月份氨基酸最为新鲜;氨基酸降解系数DI和D构型氨基酸成负相关性关系,表明自然细菌来源的D-氨基酸在降解过程中的变化.  相似文献   

16.
河流碳输出过程构成全球碳循环的一个重要环节。基于一个完整水文年的月周期性采样分析,讨论了五华河径流中悬浮颗粒有机质(POM)的性质及其来源,估算了流域有机质的输出通量。结果表明:五华河径流中颗粒有机碳(POC)和颗粒有机氮(PON)的平均含量分别为0.77 mg/L和0.12 mg/L,其中汛期含量高于枯水期;五华河河流总悬浮颗粒物(TSS)、POC、PON含量以及河流颗粒有机质C/N比与流量的关系揭示五华河径流中POM主要源自流域土壤有机质的侵蚀,而且在迁移过程中受到水体微生物的分解;五华河流域POC和PON年输出通量分别为430 kg/(km2·a)和70 kg/(km2·a),其中汛期POC和PON输出量分别占全年输出总量的74.23%和76.17%。  相似文献   

17.
Riverine export of aged terrestrial organic matter to the North Atlantic Ocean   总被引:20,自引:0,他引:20  
Raymond PA  Bauer JE 《Nature》2001,409(6819):497-500
Global riverine discharge of organic matter represents a substantial source of terrestrial dissolved and particulate organic carbon to the oceans. This input from rivers is, by itself, more than large enough to account for the apparent steady-state replacement times of 4,00-6,000 yr for oceanic dissolved organic carbon. But paradoxically, terrestrial organic matter, derived from land plants, is not detected in seawater and sediments in quantities that correspond to its inputs. Here we present natural 14C and 13C data from four rivers that discharge to the western North Atlantic Ocean and find that these rivers are sources of old (14C-depleted) and young (14C-enriched) terrestrial dissolved organic carbon, and of predominantly old terrestrial particulate organic carbon. These findings contrast with limited earlier data that suggested terrestrial organic matter transported by rivers might be generally enriched in 14C from nuclear testing, and hence newly produced. We also find that much of the young dissolved organic carbon can be selectively degraded over the residence times of river and coastal waters, leaving an even older and more refractory component for oceanic export. Thus, pre-ageing and degradation may alter significantly the structure, distributions and quantities of terrestrial organic matter before its delivery to the oceans.  相似文献   

18.
Abraham ER  Law CS  Boyd PW  Lavender SJ  Maldonado MT  Bowie AR 《Nature》2000,407(6805):727-730
The growth of populations is known to be influenced by dispersal, which has often been described as purely diffusive. In the open ocean, however, the tendrils and filaments of phytoplankton populations provide evidence for dispersal by stirring. Despite the apparent importance of horizontal stirring for plankton ecology, this process remains poorly characterized. Here we investigate the development of a discrete phytoplankton bloom, which was initiated by the iron fertilization of a patch of water (7 km in diameter) in the Southern Ocean. Satellite images show a striking, 150-km-long bloom near the experimental site, six weeks after the initial fertilization. We argue that the ribbon-like bloom was produced from the fertilized patch through stirring, growth and diffusion, and we derive an estimate of the stirring rate. In this case, stirring acts as an important control on bloom development, mixing phytoplankton and iron out of the patch, but also entraining silicate. This may have prevented the onset of silicate limitation, and so allowed the bloom to continue for as long as there was sufficient iron. Stirring in the ocean is likely to be variable, so blooms that are initially similar may develop very differently.  相似文献   

19.
Hopkinson CS  Vallino JJ 《Nature》2005,433(7022):142-145
Oceanic dissolved organic carbon (DOC) constitutes one of the largest pools of reduced carbon in the biosphere. Estimated DOC export from the surface ocean represents 20% of total organic carbon flux to the deep ocean, which constitutes a primary control on atmospheric carbon dioxide levels. DOC is the carbon component of dissolved organic matter (DOM) and an accurate quantification of DOM pools, fluxes and their controls is therefore critical to understanding oceanic carbon cycling. DOC export is directly coupled with dissolved organic nitrogen and phosphorus export. However, the C:N:P stoichiometry (by atoms) of DOM dynamics is poorly understood. Here we study the stoichiometry of the DOM pool and of DOM decomposition in continental shelf, continental slope and central ocean gyre environments. We find that DOM is remineralized and produced with a C:N:P stoichiometry of 199:20:1 that is substantially lower than for bulk pools (typically >775:54:1), but greater than for particulate organic matter (106:16:1--the Redfield ratio). Thus for a given mass of new N and P introduced into surface water, more DOC can be exported than would occur at the Redfield ratio. This may contribute to the excess respiration estimated to occur in the interior ocean. Our results place an explicit constraint on global carbon export and elemental balance via advective pathways.  相似文献   

20.
利用水玻璃制备了具有较佳形态的活性硅酸,研究了该活性硅酸对不同B值铝盐助凝时模拟体系的混凝行为.结果表明:该活性硅酸具有明显的助凝效果;当有活性硅酸助凝时,体系Zeta电位明显降低,而除浊效率得到明显提高;有活性硅酸参与下的混凝机理有别于单纯铝盐,活性硅酸的介入会削弱铝盐在混凝中的电中和作用,但同时强化了黏接架桥与网捕卷扫的作用机制.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号