首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Leptin-regulated endocannabinoids are involved in maintaining food intake   总被引:57,自引:0,他引:57  
Leptin is the primary signal through which the hypothalamus senses nutritional state and modulates food intake and energy balance. Leptin reduces food intake by upregulating anorexigenic (appetite-reducing) neuropeptides, such as alpha-melanocyte-stimulating hormone, and downregulating orexigenic (appetite-stimulating) factors, primarily neuropeptide Y. Genetic defects in anorexigenic signalling, such as mutations in the melanocortin-4 (ref. 5) or leptin receptors, cause obesity. However, alternative orexigenic pathways maintain food intake in mice deficient in neuropeptide Y. CB1 cannabinoid receptors and the endocannabinoids anandamide and 2-arachidonoyl glycerol are present in the hypothalamus, and marijuana and anandamide stimulate food intake. Here we show that following temporary food restriction, CB1 receptor knockout mice eat less than their wild-type littermates, and the CB1 antagonist SR141716A reduces food intake in wild-type but not knockout mice. Furthermore, defective leptin signalling is associated with elevated hypothalamic, but not cerebellar, levels of endocannabinoids in obese db/db and ob/ob mice and Zucker rats. Acute leptin treatment of normal rats and ob/ob mice reduces anandamide and 2-arachidonoyl glycerol in the hypothalamus. These findings indicate that endocannabinoids in the hypothalamus may tonically activate CB1 receptors to maintain food intake and form part of the neural circuitry regulated by leptin.  相似文献   

2.
Gut hormone PYY(3-36) physiologically inhibits food intake   总被引:42,自引:0,他引:42  
Food intake is regulated by the hypothalamus, including the melanocortin and neuropeptide Y (NPY) systems in the arcuate nucleus. The NPY Y2 receptor (Y2R), a putative inhibitory presynaptic receptor, is highly expressed on NPY neurons in the arcuate nucleus, which is accessible to peripheral hormones. Peptide YY(3-36) (PYY(3-36)), a Y2R agonist, is released from the gastrointestinal tract postprandially in proportion to the calorie content of a meal. Here we show that peripheral injection of PYY(3-36) in rats inhibits food intake and reduces weight gain. PYY(3-36) also inhibits food intake in mice but not in Y2r-null mice, which suggests that the anorectic effect requires the Y2R. Peripheral administration of PYY(3-36) increases c-Fos immunoreactivity in the arcuate nucleus and decreases hypothalamic Npy messenger RNA. Intra-arcuate injection of PYY(3-36) inhibits food intake. PYY(3-36) also inhibits electrical activity of NPY nerve terminals, thus activating adjacent pro-opiomelanocortin (POMC) neurons. In humans, infusion of normal postprandial concentrations of PYY(3-36) significantly decreases appetite and reduces food intake by 33% over 24 h. Thus, postprandial elevation of PYY(3-36) may act through the arcuate nucleus Y2R to inhibit feeding in a gut-hypothalamic pathway.  相似文献   

3.
Leptin is a hormone secreted by adipocytes that plays a pivotal role in regulating food intake, energy expenditure and neuroendocrine function. Leptin stimulates the oxidation of fatty acids and the uptake of glucose, and prevents the accumulation of lipids in nonadipose tissues, which can lead to functional impairments known as "lipotoxicity". The signalling pathways that mediate the metabolic effects of leptin remain undefined. The 5'-AMP-activated protein kinase (AMPK) potently stimulates fatty-acid oxidation in muscle by inhibiting the activity of acetyl coenzyme A carboxylase (ACC). AMPK is a heterotrimeric enzyme that is conserved from yeast to humans and functions as a 'fuel gauge' to monitor the status of cellular energy. Here we show that leptin selectively stimulates phosphorylation and activation of the alpha2 catalytic subunit of AMPK (alpha2 AMPK) in skeletal muscle, thus establishing a previously unknown signalling pathway for leptin. Early activation of AMPK occurs by leptin acting directly on muscle, whereas later activation depends on leptin functioning through the hypothalamic-sympathetic nervous system axis. In parallel with its activation of AMPK, leptin suppresses the activity of ACC, thereby stimulating the oxidation of fatty acids in muscle. Blocking AMPK activation inhibits the phosphorylation of ACC stimulated by leptin. Our data identify AMPK as a principal mediator of the effects of leptin on fatty-acid metabolism in muscle.  相似文献   

4.
Members of the muscarinic acetylcholine receptor family (M1-M5) have central roles in the regulation of many fundamental physiological functions. Identifying the specific receptor subtype(s) that mediate the diverse muscarinic actions of acetylcholine is of considerable therapeutic interest, but has proved difficult primarily because of a lack of subtype-selective ligands. Here we show that mice deficient in the M3 muscarinic receptor (M3R-/- mice) display a significant decrease in food intake, reduced body weight and peripheral fat deposits, and very low levels of serum leptin and insulin. Paradoxically, hypothalamic messenger RNA levels of melanin-concentrating hormone (MCH), which are normally upregulated in fasted animals leading to an increase in food intake, are significantly reduced in M3R-/- mice. Intra-cerebroventricular injection studies show that an agouti-related peptide analogue lacked orexigenic (appetite-stimulating) activity in M3R-/- mice. However, M3R-/- mice remained responsive to the orexigenic effects of MCH. Our data indicate that there may be a cholinergic pathway that involves M3-receptor-mediated facilitation of food intake at a site downstream of the hypothalamic leptin/melanocortin system and upstream of the MCH system.  相似文献   

5.
The administration of leptin to leptin-deficient humans, and the analogous Lepob/Lepob mice, effectively reduces hyperphagia and obesity. But common obesity is associated with elevated leptin, which suggests that obese humans are resistant to this adipocyte hormone. In addition to regulating long-term energy balance, leptin also rapidly affects neuronal activity. Proopiomelanocortin (POMC) and neuropeptide-Y types of neurons in the arcuate nucleus of the hypothalamus are both principal sites of leptin receptor expression and the source of potent neuropeptide modulators, melanocortins and neuropeptide Y, which exert opposing effects on feeding and metabolism. These neurons are therefore ideal for characterizing leptin action and the mechanism of leptin resistance; however, their diffuse distribution makes them difficult to study. Here we report electrophysiological recordings on POMC neurons, which we identified by targeted expression of green fluorescent protein in transgenic mice. Leptin increases the frequency of action potentials in the anorexigenic POMC neurons by two mechanisms: depolarization through a nonspecific cation channel; and reduced inhibition by local orexigenic neuropeptide-Y/GABA (gamma-aminobutyric acid) neurons. Furthermore, we show that melanocortin peptides have an autoinhibitory effect on this circuit. On the basis of our results, we propose an integrated model of leptin action and neuronal architecture in the arcuate nucleus of the hypothalamus.  相似文献   

6.
Identification of nesfatin-1 as a satiety molecule in the hypothalamus   总被引:3,自引:0,他引:3  
The brain hypothalamus contains certain secreted molecules that are important in regulating feeding behaviour. Here we show that nesfatin, corresponding to NEFA/nucleobindin2 (NUCB2), a secreted protein of unknown function, is expressed in the appetite-control hypothalamic nuclei in rats. Intracerebroventricular (i.c.v.) injection of NUCB2 reduces feeding. Rat cerebrospinal fluid contains nesfatin-1, an amino-terminal fragment derived from NUCB2, and its expression is decreased in the hypothalamic paraventricular nucleus under starved conditions. I.c.v. injection of nesfatin-1 decreases food intake in a dose-dependent manner, whereas injection of an antibody neutralizing nesfatin-1 stimulates appetite. In contrast, i.c.v. injection of other possible fragments processed from NUCB2 does not promote satiety, and conversion of NUCB2 to nesfatin-1 is necessary to induce feeding suppression. Chronic i.c.v. injection of nesfatin-1 reduces body weight, whereas rats gain body weight after chronic i.c.v. injection of antisense morpholino oligonucleotide against the gene encoding NUCB2. Nesfatin-1-induced anorexia occurs in Zucker rats with a leptin receptor mutation, and an anti-nesfatin-1 antibody does not block leptin-induced anorexia. In contrast, central injection of alpha-melanocyte-stimulating hormone elevates NUCB2 gene expression in the paraventricular nucleus, and satiety by nesfatin-1 is abolished by an antagonist of the melanocortin-3/4 receptor. We identify nesfatin-1 as a satiety molecule that is associated with melanocortin signalling in the hypothalamus.  相似文献   

7.
The gut-derived hormone ghrelin exerts its effect on the brain by regulating neuronal activity. Ghrelin-induced feeding behaviour is controlled by arcuate nucleus neurons that co-express neuropeptide Y and agouti-related protein (NPY/AgRP neurons). However, the intracellular mechanisms triggered by ghrelin to alter NPY/AgRP neuronal activity are poorly understood. Here we show that ghrelin initiates robust changes in hypothalamic mitochondrial respiration in mice that are dependent on uncoupling protein 2 (UCP2). Activation of this mitochondrial mechanism is critical for ghrelin-induced mitochondrial proliferation and electric activation of NPY/AgRP neurons, for ghrelin-triggered synaptic plasticity of pro-opiomelanocortin-expressing neurons, and for ghrelin-induced food intake. The UCP2-dependent action of ghrelin on NPY/AgRP neurons is driven by a hypothalamic fatty acid oxidation pathway involving AMPK, CPT1 and free radicals that are scavenged by UCP2. These results reveal a signalling modality connecting mitochondria-mediated effects of G-protein-coupled receptors on neuronal function and associated behaviour.  相似文献   

8.
Ghrelin induces adiposity in rodents   总被引:127,自引:0,他引:127  
Tschöp M  Smiley DL  Heiman ML 《Nature》2000,407(6806):908-913
The discovery of the peptide hormone ghrelin, an endogenous ligand for the growth hormone secretagogue (GHS) receptor, yielded the surprising result that the principal site of ghrelin synthesis is the stomach and not the hypothalamus. Although ghrelin is likely to regulate pituitary growth hormone (GH) secretion along with GH-releasing hormone and somatostatin, GHS receptors have also been identified on hypothalamic neurons and in the brainstem. Apart from potential paracrine effects, ghrelin may thus offer an endocrine link between stomach, hypothalamus and pituitary, suggesting an involvement in regulation of energy balance. Here we show that peripheral daily administration of ghrelin caused weight gain by reducing fat utilization in mice and rats. Intracerebroventricular administration of ghrelin generated a dose-dependent increase in food intake and body weight. Rat serum ghrelin concentrations were increased by fasting and were reduced by re-feeding or oral glucose administration, but not by water ingestion. We propose that ghrelin, in addition to its role in regulating GH secretion, signals the hypothalamus when an increase in metabolic efficiency is necessary.  相似文献   

9.
The ability to maintain adequate nutrient intake is critical for survival. Complex interrelated neuronal circuits have developed in the mammalian brain to regulate many aspects of feeding behaviour, from food-seeking to meal termination. The hypothalamus and brainstem are thought to be the principal homeostatic brain areas responsible for regulating body weight. However, in the current 'obesogenic' human environment food intake is largely determined by non-homeostatic factors including cognition, emotion and reward, which are primarily processed in corticolimbic and higher cortical brain regions. Although the pleasure of eating is modulated by satiety and food deprivation increases the reward value of food, there is currently no adequate neurobiological account of this interaction between homeostatic and higher centres in the regulation of food intake in humans. Here we show, using functional magnetic resonance imaging, that peptide YY3-36 (PYY), a physiological gut-derived satiety signal, modulates neural activity within both corticolimbic and higher-cortical areas as well as homeostatic brain regions. Under conditions of high plasma PYY concentrations, mimicking the fed state, changes in neural activity within the caudolateral orbital frontal cortex predict feeding behaviour independently of meal-related sensory experiences. In contrast, in conditions of low levels of PYY, hypothalamic activation predicts food intake. Thus, the presence of a postprandial satiety factor switches food intake regulation from a homeostatic to a hedonic, corticolimbic area. Our studies give insights into the neural networks in humans that respond to a specific satiety signal to regulate food intake. An increased understanding of how such homeostatic and higher brain functions are integrated may pave the way for the development of new treatment strategies for obesity.  相似文献   

10.
为阐明体重和能量代谢的生理调节对动物适应食物短缺的作用和意义,将成年KM小鼠按自由取食量的75%和50%随机限食四周,再重喂食四周.分别测定了摄食量、基础代谢率(BMR)和脂肪含量.限食75%和50%使BMR和消化道重量显著增加,体重、胴体重、脂肪含量显著降低;重喂食后,BMR和体重恢复到对照组水平,脂肪含量显著高于对照组.结果表明,动物通过能量代谢和体重调节以适应不同程度的食物资源短缺的应激环境,通过增加身体能量贮存以增强应对食物短缺的适应能力.  相似文献   

11.
12.
The product of the obesity gene, called leptin, is an important regulator of adiposity, which mainly functions via its regulation of feed intake and energy metabolism. Both obesity gene (ob gene) and leptin receptor gene ( OBR gene) are thought to play a major role in controlling of body fat mass as well as body weight. The result of RT-PCR shows that levels of pig OBRmRNA are higher in hypothalamus, lung and liver, and lower expression can be detected in other tissues. Total RNA purified from 11 different organs and tissues have been hybridized with pig OBR cDNA probes. The hybridization signals are shown in 7 organs and tissues. 4.1 and 3.8 kb bands were observed from hypothalamus, whereas 3.8 and 3.5 kb bands were observed in other tissues instead. The nearly complete sequence of the extracellular domain of pig OBR gene was obtained. The homology of sequence is 89.2% between pig and human, 80.3% between pig and mouse. Alignment of the predicted amino acid sequence of OBR in pig, human and mouse shows that the overall identity is 86.5% between pig and human, 76.6% between pig and mouse. Two WSXWS motifs were found at aa313 and aa616.  相似文献   

13.
瘦素( leptin)是脂肪组织分泌的一种蛋白质类激素,主要作用在下丘脑,具有调节体脂代谢、能量平衡等功能,瘦素水平的高低对肥胖、2-型糖尿病等疾病起到调节作用。血清瘦素可通过血脑屏障与下丘脑的瘦素受体结合,激活 JAK2-STAT3等信号转导通路,进而改变中枢神经系统中一系列神经肽的表达。通过收集大量近年来关于不同运动形式、运动强度、运动时间等情况对血浆瘦素水平影响的文献,总结分析出一次性运动、非一次性运动对血浆瘦素水平和能量代谢的影响,以及目前研究存在的问题,加深对瘦素功能和机理的分子水平认知,并展望了今后的研究前景。  相似文献   

14.
目的研究长期应用rhCNTF对谷氨酸钠(MSG)肥胖大鼠血脂的影响。方法建立MSG肥胖大鼠模型。3月龄时将肥胖动物随机分5组:分别皮下注射rhCNTF300μg·kg-1·d-1(高剂量组)、100μg·kg-1·d-1(中剂量组)、30μg·kg-1·d-1(低剂量组);西布曲明灌胃8 mg·kg-1·d-1(阳性对照组);模型组和对照组均给予生理盐水1 mL·kg-1·d-1,连续给药33 d。末次给药后24 h,同时动物禁食过夜后,在水合氯醛麻醉下测体重、身长,计算LI;断头后取腹部脂肪称重计算脂肪系数;腹主动脉取血离心后测血清总胆固醇、甘油三酯、高密度脂蛋白、血糖和血清胰岛素水平。结果(1)造模:正常大鼠189.40±38.72 g,谷氨酸钠肥胖大鼠平均体重(246.72±36.67)g,(P<0.001);LI(Lee’s指数)分别为289.27±9.05和304.42±9.64(P<0.001),说明造模成功。(2)药物实验结果高、中剂量给药组LI、脂肪系数、血总胆固醇、甘油三酯、血糖明显下降,高剂量组胰岛素水平也有所下降,达到统计学要求的显著性。结论rhCNTF30~300μg·kg-1·d-1皮下注射连续用药33 d,对谷氨酸钠肥胖大鼠具有明显的降脂作用,可能对Ⅱ型糖尿病肥胖有效。  相似文献   

15.
研究中枢神经介素U(NMU)受体2(NMU2R)与黑皮质激素(MC)受体途径(MCR3/4)在调节摄食行为和能量平衡方面的相互作用关系.对禁食或不禁食大鼠脑室注射NMU2R内源性配体NMU和MCR3/4信号途径高亲和力拮抗剂SHU9119,通过测定不同时间点大鼠摄食量和体重变化,探讨中枢NMU2R和黑皮质素受体途径在调节动物摄食行为上的作用及其相互关系.脑室注射NMU对大鼠食欲有显著抑制作用;在同时注射NMU和SHU9119的情况下,NMU2R对大鼠的这种食欲抑制作用会部分受到MCR3/4信号途径变化的影响;同样,对SHU9119前处理大鼠脑内注射NMU,NMU2R抑制食欲的作用也会明显降低,其在摄食方面的作用被部分抑制.结果提示,NMU能够有效的调节摄食行为,而且这种在摄食行为上的调控作用可能部分受MC受体途径介导.  相似文献   

16.
A role for ghrelin in the central regulation of feeding   总被引:129,自引:0,他引:129  
Ghrelin is an acylated peptide that stimulates the release of growth hormone from the pituitary. Ghrelin-producing neurons are located in the hypothalamus, whereas ghrelin receptors are expressed in various regions of the brain, which is indicative of central-and as yet undefined-physiological functions. Here we show that ghrelin is involved in the hypothalamic regulation of energy homeostasis. Intracerebroventricular injections of ghrelin strongly stimulated feeding in rats and increased body weight gain. Ghrelin also increased feeding in rats that are genetically deficient in growth hormone. Anti-ghrelin immunoglobulin G robustly suppressed feeding. After intracerebroventricular ghrelin administration, Fos protein, a marker of neuronal activation, was found in regions of primary importance in the regulation of feeding, including neuropeptide Y6 (NPY) neurons and agouti-related protein (AGRP) neurons. Antibodies and antagonists of NPY and AGRP abolished ghrelin-induced feeding. Ghrelin augmented NPY gene expression and blocked leptin-induced feeding reduction, implying that there is a competitive interaction between ghrelin and leptin in feeding regulation. We conclude that ghrelin is a physiological mediator of feeding, and probably has a function in growth regulation by stimulating feeding and release of growth hormone.  相似文献   

17.
为探究高山姬鼠在长期充足摄食条件下是否存在瘦素抵抗,在实验室条件下选取15只健康雄性高山姬鼠进行实验,体重为32.98±0.96g,喂以充足的小鼠标准饲料.在(25±1)℃(光照12L:12 D)条件下驯化3个月,测定其体重、摄入能、脂肪重量、血清瘦素含量.结果显示,8只高山姬鼠的体重维持稳定(正常组),为(33.94±0.83)g;而另7只高山姬鼠体重显著增加(肥胖组),为(50.58±2.00)g.肥胖组体重、摄入能及血清瘦素含量极显著高于正常组,脂肪重量肥胖组显著高于正常组.分析知,高山姬鼠的血清瘦素含量与体重、脂肪重量和摄入能呈极显著正相关.以上结果表明,高山姬鼠可能存在瘦素抵抗.  相似文献   

18.
D Atasoy  JN Betley  HH Su  SM Sternson 《Nature》2012,488(7410):172-177
Hunger is a complex behavioural state that elicits intense food seeking and consumption. These behaviours are rapidly recapitulated by activation of starvation-sensitive AGRP neurons, which present an entry point for reverse-engineering neural circuits for hunger. Here we mapped synaptic interactions of AGRP neurons with multiple cell populations in mice and probed the contribution of these distinct circuits to feeding behaviour using optogenetic and pharmacogenetic techniques. An inhibitory circuit with paraventricular hypothalamus (PVH) neurons substantially accounted for acute AGRP neuron-evoked eating, whereas two other prominent circuits were insufficient. Within the PVH, we found that AGRP neurons target and inhibit oxytocin neurons, a small population that is selectively lost in Prader-Willi syndrome, a condition involving insatiable hunger. By developing strategies for evaluating molecularly defined circuits, we show that AGRP neuron suppression of oxytocin neurons is critical for evoked feeding. These experiments reveal a new neural circuit that regulates hunger state and pathways associated with overeating disorders.  相似文献   

19.
Rapid development of tolerance to the behavioural actions of cholecystokinin   总被引:10,自引:0,他引:10  
J N Crawley  M C Beinfeld 《Nature》1983,302(5910):703-706
Cholecystokinin (CCK) acts acutely to inhibit food consumption in fasted rats, mice, sheep, pigs, monkeys and humans. CCK has been proposed as a satiety signal, inducing the behavioural sequence of satiety, or as an aversive internal stimulus, which inhibits food intake by inducing malaise. Reductions in food intake and related exploratory behaviours are initiated by CCK at its peripheral receptor in the gut, which appears to transmit sensory feedback via the vagus nerve to brain regions mediating appetitive behaviours. The therapeutic potential of CCK as an appetite suppressant in obesity syndromes rests on the demonstration of significant, long-lasting body weight reduction. Chronic CCK administration by repeated injections is problematic, since this peptide is rapidly degraded in vivo. We chose the Alzet constant infusion osmotic minipump to investigate possible alterations in body weight and food intake during continuous infusion of CCK. We now report that no change was detected in either body weight or total daily food consumption at any time point during 2 weeks of intraperitoneally (i.p.) infused CCK. The mechanism underlying the lack of chronic CCK effects appears to be a rapid development of behavioural tolerance. Acute challenge doses of CCK which induced satiety-related behaviours in saline-infused rats were ineffective in CCK-infused rats. The behavioural tolerance was apparent within a few hours of minipump implantation. These results provide the first evidence that rapid and reversible tolerance develops to the actions of a gut peptide.  相似文献   

20.
F J Vaccarino  F E Bloom  J Rivier  W Vale  G F Koob 《Nature》1985,314(6007):167-168
Hypothalamic growth hormone-releasing factors (GRFs) have been purified recently from human pancreatic (hp) tumours and from rat hypothalamus (rh). GRF peptides have strong homology with peptides of the glucagon, vasoactive intestinal polypeptide and PHI-27 family. Aside from their potent actions on release of somatotropin, no other biological actions of GRFs have been reported. GRF has been localized in neurones bordering the ventromedial hypothalamic nucleus, a region associated frequently with experimental analysis of feeding behaviour. We now report that intracerebroventricularly (i.c.v.)-administered rhGRF and hpGRF(1-40) in doses of 0.2, 2.0 and 20.0 pmol, produced an increase in food intake in hungry rats. This effect seemed to be specific to GRF as i.c.v. injections of a structurally related but physiologically inactive peptide in the same doses had no effect on feeding. In addition, peripheral injections of rhGRF or growth hormone had no effect on food intake, suggesting that the present effects may be mediated centrally. Injections (i.c.v.) of rhGRF (0.2, 2.0 and 20.0 pmol) had no effect on general activity, suggesting that GRF does not produce nonspecific arousal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号