首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Chaturvedi and Carroll have proposed the SINDCLUS method for fitting the INDCLUS model. It is based on splitting the two appearances of the cluster matrix in the least squares fit function and relying on convergence to a solution where both cluster matrices coincide. Kiers has proposed an alternative method which preserves equality of the cluster matrices throughout. This paper shows that the latter method is generally to be preferred. However, because the method has a serious local minimum problem, alternative approaches should be contemplated.  相似文献   

2.
Block-Relaxation Approaches for Fitting the INDCLUS Model   总被引:1,自引:1,他引:0  
A well-known clustering model to represent I?×?I?×?J data blocks, the J frontal slices of which consist of I?×?I object by object similarity matrices, is the INDCLUS model. This model implies a grouping of the I objects into a prespecified number of overlapping clusters, with each cluster having a slice-specific positive weight. An INDCLUS model is fitted to a given data set by means of minimizing a least squares loss function. The minimization of this loss function has appeared to be a difficult problem for which several algorithmic strategies have been proposed. At present, the best available option seems to be the SYMPRES algorithm, which minimizes the loss function by means of a block-relaxation algorithm. Yet, SYMPRES is conjectured to suffer from a severe local optima problem. As a way out, based on theoretical results with respect to optimally designing block-relaxation algorithms, five alternative block-relaxation algorithms are proposed. In a simulation study it appears that the alternative algorithms with overlapping parameter subsets perform best and clearly outperform SYMPRES in terms of optimization performance and cluster recovery.  相似文献   

3.
Classification and spatial methods can be used in conjunction to represent the individual information of similar preferences by means of groups. In the context of latent class models and using Simulated Annealing, the cluster-unfolding model for two-way two-mode preference rating data has been shown to be superior to a two-step approach of first deriving the clusters and then unfolding the classes. However, the high computational cost makes the procedure only suitable for small or medium-sized data sets, and the hypothesis of independent and normally distributed preference data may also be too restrictive in many practical situations. Therefore, an alternating least squares procedure is proposed, in which the individuals and the objects are partitioned into clusters, while at the same time the cluster centers are represented by unfolding. An enhanced Simulated Annealing algorithm in the least squares framework is also proposed in order to address the local optimum problem. Real and artificial data sets are analyzed to illustrate the performance of the model.  相似文献   

4.
A validation study of a variable weighting algorithm for cluster analysis   总被引:1,自引:0,他引:1  
De Soete (1986, 1988) proposed a variable weighting procedure when Euclidean distance is used as the dissimilarity measure with an ultrametric hierarchical clustering method. The algorithm produces weighted distances which approximate ultrametric distances as closely as possible in a least squares sense. The present simulation study examined the effectiveness of the De Soete procedure for an applications problem for which it was not originally intended. That is, to determine whether or not the algorithm can be used to reduce the influence of variables which are irrelevant to the clustering present in the data. The simulation study examined the ability of the procedure to recover a variety of known underlying cluster structures. The results indicate that the algorithm is effective in identifying extraneous variables which do not contribute information about the true cluster structure. Weights near 0.0 were typically assigned to such extraneous variables. Furthermore, the variable weighting procedure was not adversely effected by the presence of other forms of error in the data. In general, it is recommended that the variable weighting procedure be used for applied analyses when Euclidean distance is employed with ultrametric hierarchical clustering methods.  相似文献   

5.
In this paper we provide an explicit probability distribution for classification purposes when observations are viewed on the real line and classifications are to be based on numerical orderings. The classification model is derived from a Bayesian nonparametric mixture of Dirichlet process model; with some modifications. The resulting approach then more closely resembles a classical hierarchical grouping rule in that it depends on sums of squares of neighboring values. The proposed probability model for classification relies on a numerical procedure based on a reversible Markov chain Monte Carlo (MCMC) algorithm for determining the probabilities. Some numerical illustrations comparing with alternative ideas for classification are provided.  相似文献   

6.
We present a new distance based quartet method for phylogenetic tree reconstruction, called Minimum Tree Cost Quartet Puzzling. Starting from a distance matrix computed from natural data, the algorithm incrementally constructs a tree by adding one taxon at a time to the intermediary tree using a cost function based on the relaxed 4-point condition for weighting quartets. Different input orders of taxa lead to trees having distinct topologies which can be evaluated using a maximum likelihood or weighted least squares optimality criterion. Using reduced sets of quartets and a simple heuristic tree search strategy we obtain an overall complexity of O(n 5 log2 n) for the algorithm. We evaluate the performances of the method through comparative tests and show that our method outperforms NJ when a weighted least squares optimality criterion is employed. We also discuss the theoretical boundaries of the algorithm.  相似文献   

7.
The additive biclustering model for two-way two-mode object by variable data implies overlapping clusterings of both the objects and the variables together with a weight for each bicluster (i.e., a pair of an object and a variable cluster). In the data analysis, an additive biclustering model is fitted to given data by means of minimizing a least squares loss function. To this end, two alternating least squares algorithms (ALS) may be used: (1) PENCLUS, and (2) Baier’s ALS approach. However, both algorithms suffer from some inherent limitations, which may hamper their performance. As a way out, based on theoretical results regarding optimally designing ALS algorithms, in this paper a new ALS algorithm will be presented. In a simulation study this algorithm will be shown to outperform the existing ALS approaches.  相似文献   

8.
Carroll and Chang have derived the symmetric CANDECOMP model from the INDSCAL model, to fit symmetric matrices of approximate scalar products in the least squares sense. Typically, the CANDECOMP algorithm is used to estimate the parameters. In the present paper it is shown that negative weights may occur with CANDECOMP. This phenomenon can be suppressed by updating the weights by the Nonnegative Least Squares Algorithm. A potential drawback of the resulting procedure is that it may produce two different versions of the stimulus space matrix. To obviate this possibility, a symmetry preserving algorithm is offered, which can be monitored to produce non-negative weights as well. This work was partially supported by the Royal Netherlands Academy of Arts and Sciences.  相似文献   

9.
In this paper we develop a version of the Jackknife which seems especially suited for Multidimensional Scaling. It deletes one stimulus at a time, and combines the resulting solutions by a least squares matching method. The results can be used for stability analysis, and for purposes of cross validation.  相似文献   

10.
This paper proposes a maximum clustering similarity (MCS) method for determining the number of clusters in a data set by studying the behavior of similarity indices comparing two (of several) clustering methods. The similarity between the two clusterings is calculated at the same number of clusters, using the indices of Rand (R), Fowlkes and Mallows (FM), and Kulczynski (K) each corrected for chance agreement. The number of clusters at which the index attains its maximum is a candidate for the optimal number of clusters. The proposed method is applied to simulated bivariate normal data, and further extended for use in circular data. Its performance is compared to the criteria discussed in Tibshirani, Walther, and Hastie (2001). The proposed method is not based on any distributional or data assumption which makes it widely applicable to any type of data that can be clustered using at least two clustering algorithms.  相似文献   

11.
Graphical representation of nonsymmetric relationships data has usually proceeded via separate displays for the symmetric and the skew-symmetric parts of a data matrix. DEDICOM avoids splitting the data into symmetric and skewsymmetric parts, but lacks a graphical representation of the results. Chino's GIPSCAL combines features of both models, but may have a poor goodness-of-fit compared to DEDICOM. We simplify and generalize Chino's method in such a way that it fits the data better. We develop an alternating least squares algorithm for the resulting method, called Generalized GIPSCAL, and adjust it to handle GIPSCAL as well. In addition, we show that Generalized GIPSCAL is a constrained variant of DEDICOM and derive necessary and sufficient conditions for equivalence of the two models. Because these conditions are rather mild, we expect that in many practical cases DEDICOM and Generalized GIPSCAL are (nearly) equivalent, and hence that the graphical representation from Generalized GIPSCAL can be used to display the DEDICOM results graphically. Such a representation is given for an illustration. Finally, we show Generalized GIPSCAL to be a generalization of another method for joint representation of the symmetric and skew-symmetric parts of a data matrix.This research has been made possible by a fellowship from the Royal Netherlands Academy of Arts and Sciences to the first author, and by research grant number A6394 to the second author, from the Natural Sciences and Engineering Research Council of Canada. The authors are obliged to Jos ten Berge and Naohito Chino for stimulating comments.  相似文献   

12.
Spectral analysis of phylogenetic data   总被引:12,自引:0,他引:12  
The spectral analysis of sequence and distance data is a new approach to phylogenetic analysis. For two-state character sequences, the character values at a given site split the set of taxa into two subsets, a bipartition of the taxa set. The vector which counts the relative numbers of each of these bipartitions over all sites is called a sequence spectrum. Applying a transformation called a Hadamard conjugation, the sequence spectrum is transformed to the conjugate spectrum. This conjugation corrects for unobserved changes in the data, independently from the choice of phylogenetic tree. For any given phylogenetic tree with edge weights (probabilities of state change), we define a corresponding tree spectrum. The selection of a weighted phylogenetic tree from the given sequence data is made by matching the conjugate spectrum with a tree spectrum. We develop an optimality selection procedure using a least squares best fit, to find the phylogenetic tree whose tree spectrum most closely matches the conjugate spectrum. An inferred sequence spectrum can be derived from the selected tree spectrum using the inverse Hadamard conjugation to allow a comparison with the original sequence spectrum. A possible adaptation for the analysis of four-state character sequences with unequal frequencies is considered. A corresponding spectral analysis for distance data is also introduced. These analyses are illustrated with biological examples for both distance and sequence data. Spectral analysis using the Fast Hadamard transform allows optimal trees to be found for at least 20 taxa and perhaps for up to 30 taxa. The development presented here is self contained, although some mathematical proofs available elsewhere have been omitted. The analysis of sequence data is based on methods reported earlier, but the terminology and the application to distance data are new.  相似文献   

13.
A latent class vector model for preference ratings   总被引:1,自引:1,他引:1  
A latent class formulation of the well-known vector model for preference data is presented. Assuming preference ratings as input data, the model simultaneously clusters the subjects into a small number of homogeneous groups (or latent classes) and constructs a joint geometric representation of the choice objects and the latent classes according to a vector model. The distributional assumptions on which the latent class approach is based are analogous to the distributional assumptions that are consistent with the common practice of fitting the vector model to preference data by least squares methods. An EM algorithm for fitting the latent class vector model is described as well as a procedure for selecting the appropriate number of classes and the appropriate number of dimensions. Some illustrative applications of the latent class vector model are presented and some possible extensions are discussed. Geert De Soete is supported as “Bevoegdverklaard Navorser” of the Belgian “Nationaal Fonds voor Wetenschappelijk Onderzoek.”  相似文献   

14.
Two algorithms for pyramidal classification — a generalization of hierarchical classification — are presented that can work with incomplete dissimilarity data. These approaches — a modification of the pyramidal ascending classification algorithm and a least squares based penalty method — are described and compared using two different types of complete dissimilarity data in which randomly chosen dissimilarities are assumed missing and the non-missing ones are subjected to random error. We also consider relationships between hierarchical classification and pyramidal classification solutions when both are based on incomplete dissimilarity data.  相似文献   

15.
In various data settings, it is necessary to compare observations from disparate data sources. We assume the data is in the dissimilarity representation (P?kalska and Duin, 2005) and investigate a joint embedding method (Priebe et al., 2013) that results in a commensurate representation of disparate dissimilarities. We further assume that there are “matched” observations from different conditions which can be considered to be highly similar, for the sake of inference. The joint embedding results in the joint optimization of fidelity (preservation of within-condition dissimilarities) and commensurability (preservation of between-condition dissimilarities between matched observations). We show that the tradeoff between these two criteria can be made explicit using weighted raw stress as the objective function for multidimensional scaling. In our investigations, we use a weight parameter, w, to control the tradeoff, and choose match detection as the inference task. Our results show weights that are optimal (with respect to the inference task) are different than equal weights for commensurability and fidelity and the proposed weighted embedding scheme provides significant improvements in statistical power.  相似文献   

16.
Given a set of objects and a symmetric matrix of dissimilarities between them, Unidimensional Scaling is the problem of finding a representation by locating points on a continuum. Approximating dissimilarities by the absolute value of the difference between coordinates on a line constitutes a serious computational problem. This paper presents an algorithm that implements Simulated Annealing in a new way, via a strategy based on a weighted alternating process that uses permutations and point-wise translations to locate the optimal configuration. Explicit implementation details are given for least squares loss functions and for least absolute deviations. The weighted, alternating process is shown to outperform earlier implementations of Simulated Annealing and other optimization strategies for Unidimensional Scaling in run time efficiency, in solution quality, or in both.  相似文献   

17.
Statistical theory in clustering   总被引:1,自引:1,他引:0  
A number of statistical models for forming and evaluating clusters are reviewed. Hierarchical algorithms are evaluated by their ability to discover high density regions in a population, and complete linkage hopelessly fails; the others don't do too well either. Single linkage is at least of mathematical interest because it is related to the minimum spanning tree and percolation. Mixture methods are examined, related to k-means, and the failure of likelihood tests for the number of components is noted. The DIP test for estimating the number of modes in a univariate population measures the distance between the empirical distribution function and the closest unimodal distribution function (or k-modal distribution function when testing for k modes). Its properties are examined and multivariate extensions are proposed. Ultrametric and evolutionary distances on trees are considered briefly.Research supported by the National Science Foundation Grant No. MCS-8102280.  相似文献   

18.
崔锡鼎是17世纪末至18世纪初朝鲜王朝的文臣,熟知《易经》与中国数学,所著《九数略》是富于哲学思想的数学书籍。该书附录"河洛变数"继承宋朝杨辉《缉古摘奇算法》"纵横图"的传统,但是另有创见。文章尝试解读其中诸个九阶方阵的数学意义,以及可能的构造方法。  相似文献   

19.
It is shown that replacement of the zero diagonal elements of the symmetric data matrix of approximate squared distances by certain other quantities in the Young-Householder algorithm will yield a least squares fit to squared distances instead of to scalar products. Iterative algorithms for obtaining these replacement diagonal elements are described and relationships with the ELEGANT algorithm (de Leeuw 1975; Takane 1977) are discussed. In large residual situations a penalty function approach, motivated by the ELEGANT algorithm, is adopted. Empirical comparisons of the algorithms are given.An early version of this paper was presented at the Multidimensional Data Analysis Workshop, Pembroke College, Cambridge, July 1985. I want to thank Jan de Leeuw and Yoshio Takane for bringing the ELEGANT algorithm to my attention and for clarifying its rationale and notation. My thanks go also to Stephen du Toit for help with the ALSCAL computations reported in Section 7.  相似文献   

20.
In supervised learning, an important issue usually not taken into account by classical methods is that a class represented in the test set may have not been encountered earlier in the learning phase. Classical supervised algorithms will automatically label such observations as belonging to one of the known classes in the training set and will not be able to detect new classes. This work introduces a model-based discriminant analysis method, called adaptive mixture discriminant analysis (AMDA), which can detect several unobserved groups of points and can adapt the learned classifier to the new situation. Two EM-based procedures are proposed for parameter estimation and model selection criteria are used for selecting the actual number of classes. Experiments on artificial and real data demonstrate the ability of the proposed method to deal with complex and real-world problems. The proposed approach is also applied to the detection of unobserved communities in social network analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号