共查询到20条相似文献,搜索用时 125 毫秒
1.
以城市污水处理厂产生的脱水污泥为原料,采用化学活化法并结合传统的直接加热技术制备脱水污泥活性炭,研究了影响脱水污泥活性炭吸附特性的各种因素.研究结果表明:制备脱水污泥活性炭的优化条件是活化剂为5 mol·L-1ZnCl2+5 mol·L-1H2SO4混合溶液,固液比为1∶2.5,复配比为2∶1,浸渍时间为24 h,活化温度为600℃,活化时间为20 min.制备的脱水污泥活性炭碘吸附值为939.7 mg.g-1,产率为69.03%,其吸附特性优于商品活性炭. 相似文献
2.
以污水处理厂剩余污泥为原料,以KOH为活化剂采用化学活化法制备污泥活性炭。研究了碳化时间、碳化温度及活化剂浓度等条件对污泥活性炭碘吸附值和产率的影响。通过正交实验确定了污泥活性炭的最佳制备条件。结果表明,以碘吸附值作为主要评价指标,制备条件对污泥活性炭的碘吸附值影响大小的顺序为:炭化时间活化剂浓度炭化温度。制备污泥活性炭的最佳工艺组合为炭化温度400℃,炭化时间40 min,活化剂浓度为0.3 mol/L,污泥活性炭的碘值为308.7 mg/g。 相似文献
3.
微波法污泥活性炭的制备技术研究 总被引:1,自引:0,他引:1
以城市污水处理厂污泥为原料,考查了固液比、活化剂浓度、浸渍时间和活化时间等因素对氢氧化钾活化-微波加热制备污泥活性炭碘吸附值和产率的影响.在单因素试验的基础上进行正交试验,获得了此工艺制备污泥活性炭的最佳条件,即:固液比1g:1.5m L,氢氧化钾浓度0.40mol·L-1,浸渍时间24h,活化时间420s.此工艺条件下制备的污泥活性炭碘吸附值为537.63 mg·g-1,比表面积为354 m2·g-1,产率为74.09%,吸附性能和产率均优于传统方法制备的污泥活性炭. 相似文献
4.
氯化锌法制备竹活性炭 总被引:3,自引:0,他引:3
活性炭的制备主要以木材和煤作为原料,采用化学法和物理法进行活化.本文在活性炭原料的选取中,采用竹子来代替木材和煤炭,使用氯化锌法制备活性炭,对制备工艺进行了研究,得到的最佳工艺条件为:活化温度600℃,浸渍比150%,活化时间为60~90min. 相似文献
5.
为消除污水处理厂产生的大量污泥和臭气造成的二次污染,阐述了硫化氢和氨气等臭气的毒性、危害和污染控制现状,以及污泥活性炭吸附剂的制备方法和同时去除硫化氢和氨气的研究,探讨了污泥活性炭的结构与脱臭性能的关系,以及污泥活性炭脱臭过程中可以用Langmuir或Freundlich吸附等温线来表述. 相似文献
6.
以城市污水处理厂污泥为原料,研究了氢氧化钾活化-微波加热制备污泥活性炭的工艺条件,考查了固液比、活化剂浓度、浸渍时间和活化时间等因素对活性炭碘吸附值和产率的影响。在单因素试验的基础上采用正交试验,得到试验室条件下微波法制备污泥活性炭的最佳工艺条件,即:固液比1g:1.5mL,氢氧化钾浓度0.40mol.L-1,浸渍时间24h,活化时间420s。此工艺条件下制备的污泥活性炭碘吸附值为537.63 mg.g-1,产率为74.09%。 相似文献
7.
用热模成型的方法制备竹屑粉酚醛树脂(PF)基复合材料,并对其力学性能特点进行了研究。结果表明:竹屑粉/PF复合材料中的竹屑粉含量和粒度对性能有明显的影响,控制竹屑粉的粒度和分散度能使竹屑粉/PF复合材料取得较好的性能。 相似文献
8.
响应曲面优化中药材废渣基活性炭的制备 总被引:1,自引:0,他引:1
采用中药材废渣为原料,以KOH为活化剂,选用响应曲面分析方法设计实验,制备活性炭.以碘吸附值和亚甲基蓝吸附值为响应值,对影响KOH活化法最重要的3个因素浸渍比、活化温度以及活化时间进行优化.结果表明,对于碘吸附值的影响,活化温度浸渍比活化时间,对于亚甲基蓝吸附值的影响,浸渍比活化温度活化时间.所得最优条件为浸渍比3、活化温度744℃、活化时间75min,在此条件下制备的活性炭碘吸附值和亚甲基蓝吸附值分别为723.75mg/g、350.82mg/g,与理论模型值非常接近,说明基于响应曲面法所得的最佳工艺参数准确可靠.通过SEM、热重分析可知该活性炭具有孔隙结构发达、热稳定性高等特点. 相似文献
9.
以黄麻杆为原料,采用磷酸活化法制备活性炭,通过正交试验探讨了磷酸浓度、活化温度、活化时间对活性炭得率和吸附性能的影响,确立了最佳制备工艺,即:磷酸浓度2mol/L、活化温度400℃、活化时间1h.实验结果表明:在最佳工艺条件下制得的黄麻杆活性炭得率为4,2.93%,碘吸附值为1059.26mg/g,亚甲基蓝吸附值为353.10mg/g,比表面积为1779.4m㎡/g,总孔容为0.960m3/g,平均孔径为2.16nm,呈现出高中孔率结构. 相似文献
10.
污泥活性炭对活性艳红K-2BP染料的吸附特性研究 总被引:6,自引:0,他引:6
以城市污水处理厂脱水污泥作为原料,采用化学活化法(ZnCl2作为活化剂)制得污泥活性炭,并将其用于吸附活性艳红K-2BP染料.考察了吸附剂投加量、吸附时间和pH值对吸附效果的影响,并对其吸附动力学和热力学特性进行了探讨. 结果表明,所制得的污泥活性炭的碘吸附值为326mg.g-1,产率为51.31%,BET比表面积为298m2.g-1,具有中孔性和开放的孔结构,浸出液重金属含量不超标;污泥活性炭对活性艳红K-2BP的吸附动力学符合二阶段吸附速率方程和伪二级动力学方程;此吸附为优惠吸附,Langmuir等温方程比Freundlich等温方程更适合于描述此吸附行为;此吸附是一个吸热过程(吸附焓ΔH>0),提高温度有利于吸附的进行,吸附自发进行(吸附自由能ΔG<0),吸附熵ΔS总是正值. 相似文献
11.
以竹活性炭为载体,采用溶胶凝胶法实现催化剂的负载制备了复合型TiO2/AC光催化剂,并采用N2等温吸附、扫描电镜 (SEM)、X射线衍射 (XRD)、热重差热分析法(TG DSC)
、傅里叶变换红外光谱法 (FT IR)等分析手段对其结构进行了表征。结果表明: TiO2的负载使得竹活性炭的比表面积、孔容发生了变化,由改性前的1 181.9 m2/g和0.670 cm3/g
分别降至979.0 m2/g和0611 cm3/g;TiO2以化学键的方式在竹活性炭表面杂乱分布,并且不易脱落;制备的TiO2/AC为锐钛矿晶型,晶粒尺寸为18.4 nm。 相似文献
12.
《阜阳师范学院学报(自然科学版)》2016,(1)
以梧桐树皮为原料、氯化锌为活化剂制备梧桐树皮活性炭。考察浸渍比、活化剂氯化锌质量分数、活化温度、活化时间等因素对活性炭的得率及吸附性能影响。利用扫描电子显微镜、傅里叶红外光谱、X射线衍射等技术对活性炭表面微观结构、形貌特征及化学结构进行了分析。结果表明制备的梧桐树皮活性炭较为适宜的工艺参数为:浸渍比为2、氯化锌质量分数为50%、活化温度为500℃、活化时间为50 min,在此条件下制备的活性炭得率可达52.4%,碘吸附值可达1 272.82 mg·g~(-1),超过国家水处理用活性炭一级品标准。经表征发现活性炭表面孔形状多样,孔隙结构发达,碳结构晶型排列较为整齐,表面可能存在羧基、酚基、醇羟基、醚基及胺基等几种官能团。 相似文献
13.
以宝日希勒褐煤为原料、Fe3O4为磁性添加剂,采用水蒸气活化法制备磁性活性炭.考察Fe3O4添加量、活化温度、活化时间和水蒸气通量对活性炭孔结构发育的影响,采用振动样品磁强计(VSM)对活性炭的磁性能进行表征.结果表明:随着Fe3O4添加量的升高,活性炭的磁性能逐渐增强,当Fe3O4的添加量达到6 g/100 g煤时,活性炭的比磁化率达到20.162×10^-7 m^3/kg,满足强磁场磁选回收的要求;Fe3O4添加降低了活性炭的烧失率,从而影响孔结构发育;活性炭的亚甲蓝值和碘值随着活化温度的升高而增大,至烧失率为71.92%时,活性炭的孔结构仍处于发育阶段;而活化时间和水蒸气通量增大使得碘值和亚甲蓝值先增大后减小,并在烧失率50% ~60%处出现峰值;添加Fe3O4能促进磁性活性炭的中孔发育,在烧失率相近的情况下,100 g煤中添加6g Fe3O4可以得到比表面积、中孔孔容和中孔率分别为509.14 m^2/g、0.241 cm^3/g和58.1%的磁性活性炭样品. 相似文献
14.
废植物炭制活性炭的研究 总被引:11,自引:0,他引:11
研究废植物炭制活性炭的可行性及效果,探讨了以水蒸汽为活化介质时活化工艺条件对活性炭吸附性能的影响,确定了最佳活化工艺条件,并对活性炭的孔结构进行了分析探讨。结果表明,利用废植物炭制活性炭是可行的,得到的活性炭具有较高的吸附性能和丰富结构。废植物炭的种类和灰发含量决定其活性炭的吸附性能。活化后活性炭表面积的增加主要源于其微孔表面积的增加。 相似文献
15.
以淀粉为原料,分别采用H3PO4活化法和物理-化学复合活化法制备活性炭,并将制备的活性炭组装成超级电容器。研究了制备工艺对活性炭孔结构及电容特性的影响;通过氮气吸附和SEM方法表征了淀粉基活性炭的孔结构和表面形貌,通过循环伏安曲线、恒流充放电、交流阻抗实验考察了其电化学性能。结果表明,比表面积与比电容并没有线性关系;物理-化学复合活化法在温度为850 ℃、活化时间为2h条件下,制备的淀粉基活性炭比表面积为1438 m2/g,比电容为150 F/g。 相似文献
16.
MTES疏水改性SiO2气凝胶修饰活性炭复合材料的制备及结构表征 总被引:1,自引:0,他引:1
采用原位聚合法,以正硅酸四乙酯(TEOS)为原料、甲基三乙氧基硅烷(MTES)为疏水改性剂,活性炭为载体,制备疏水SiO2气凝胶修饰活性炭复合材料。采用接触角分析仪、N2吸附法、傅里叶红外光谱仪(FT-IR)、扫描电子显微镜(SEM)对疏水SiO2气凝胶修饰活性炭复合材料的表面特性和结构进行表征。结果表明:所制备的疏水SiO2气凝胶修饰活性炭复合材料的接触角为156°、比表面积为759.2 m2/g、孔体积为4.38 cm3/g,最可几孔径是32nm,孔径主要分布为1~50 nm,疏水SiO2气凝胶均匀地分散于活性炭表面。 相似文献
17.
氯化锌活化法制备长柄扁桃壳活性炭 总被引:7,自引:0,他引:7
目的深入研究长柄扁桃壳的利用价值。方法探讨氯化锌活化法制备活性炭的最佳工艺条件,对产品性能进行表征,并初步研究其对印染废水的脱色能力。结果最佳工艺条件为氯化锌溶液质量分数为50%,活化温度为600℃,活化时间为90 min。此条件下活性炭得率为44.76%,碘吸附值为883.78 mg/g,亚甲基蓝吸附值为165 mg/g。活性炭77 K氮气吸附等温线属(Ⅱ)型吸附等温线,比表面积为1633.08 m2/g,累计孔容积为2.53 mL/g,平均孔径为9.68 nm。微量元素含量大小依次为ZnNaMgKCaP,未检出Mn,Cd,As,Pb等有害元素。产品对自制印染废水的脱色率达到99.57%。结论长柄扁桃壳是制备优质活性炭的理想原料。 相似文献
18.
煤基磁性活性炭的制备 总被引:5,自引:0,他引:5
以大同烟煤为原料、Fe3O4作为添加剂,催化制备了煤基磁性活性炭(MCAC).利用氮气吸附等温线表征了MCAC的孔隙结构,并考察了其吸附性能(碘值、亚甲兰值)和磁学性能.结果表明,Fe3O4对MCAC孔隙的产生具有催化作用,有利于活性炭中孔的形成和发育.其中添加10%Fe3O4的MCAC中孔率高达76.0%.MCAC与普通活性炭(AC-0)相比,碘吸附值明显降低,而亚甲兰吸附值显著提高.添加7%Fe3O4的MCAC,其碘值降低了25.5%,亚甲兰值提高了79.9%.添加适量的Fe3O4制备的MCAC具有较高的比饱和磁化强度和磁导率.Fe3O4质量分数为4%和10%时,所得MCAC的比饱和磁化强度分别是AC-0的24.4倍和44.5倍. 相似文献
19.
Fang Peng |fei Liu Li |ming Zhang Ming Zhang Shao |ping Wang Bo Wang Shao |jie School of Physics Technology Wuhan University Wuhan Hubei China 《武汉大学学报:自然科学英文版》2003,8(3):817-820
0 IntroductionInrecentyears,polymerlayeredsilicate(PLS)nanocompositeshaveabstractedgreatinterest.Theyhaveatleastoneultra finedimension ,typicallyontheorderof1to10nm .Thestruc turesofPLSnanocompositescanbebroadlydividedintotwotypes:intercalatednanocomposites,inwhichthesilicateiswell dispersedinapolymermatrixwithpolymerchainsinsertedintosilicatelayers,andexfoliatednanocompositeswherethesilicateplateletsbecomefullyseparatedordelaminated .Becauseofthein terfacialeffectbetweenthesilicatelayersa… 相似文献
20.
应用模板法从煤沥青制备中孔活性炭 总被引:1,自引:0,他引:1
以煤沥青为原料,应用纳米二氧化硅模板法制备中孔活性炭,并考察焦模比、碱碳比以及活化温度对活性炭孔结构和收率的影响.结果表明,所得活性炭试样孔径分布最大值与模板剂孔径尺寸相吻合.在焦模比为2∶1、碱碳比为4.5∶1、活化温度为850 ℃时,所制活性炭总比表面积为1 729 m2/g,其中中孔比表面积为1 702 m2/g,占总比表面积的98.43%. 相似文献