首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
用水热法制备Li4Ti5O12@TiO2复合材料与同样方法制备的尖晶石型Li4Ti5O12进行对比.对2种材料采用扫描电子显微镜、X射线衍射仪、光电子能谱仪(XPS)进行表征;N2吸附-脱附曲线进行比表面积分析;恒电流充放电测试和电化学交流阻抗(EIS)技术进行电化学性能分析.结果表明Li4Ti5O12@TiO2和Li4Ti5O12均呈颗粒状,粒径分别约为50和70 nm.XPS分析显示Li4Ti5O12@TiO2中的Ti为+4价态.电化学测试结果显示Li4Ti5O12复合了锐钛型TiO2...  相似文献   

2.
使用熔融共混方法,制备了PLA/热塑性淀粉(PLA/TPS)和PLA/亚麻纤维(PLA/FF)复合材料.研究结果表明,随着热塑性淀粉或者亚麻纤维用量的增加,PLA复合材料的拉伸强度和断裂伸长率都有所降低;而PLA的结晶速率呈现显著增大,并且晶粒细化;添加热塑性淀粉或者亚麻纤维,能够增加PLA复合材料的降解速率.  相似文献   

3.
为了解决铝基复合材料强韧性的问题,采用搅拌摩擦加工(friction stir processing, FSP)的方法制备TiO2铝基复合材料。分别采用显微组织观察试验、拉伸试验和显微硬度试验等方法,对复合材料的强化机理、显微组织以及力学性能进行表征与分析。结果表明,TiO2的加入对复合材料具有细化晶粒作用,FSP改变了铝合金的结晶形式,由无形核的连续性动态再结晶转变为颗粒刺激形核机制;FSP制备TiO2铝基复合材料的抗拉强度及显微硬度均得到了提高,当添加量达到4.8%(质量分数)时,复合材料的抗拉强度达到456 MPa,硬度值达到130 HV,与未添加颗粒相比较,分别提高了17%和16%,而延伸率仅下降了4%。FSP制备TiO2铝基复合材料不仅可以有效提高力学性能,可以改善强韧性不匹配的问题,研究结果可为新型复合材料的应用提供理论基础和技术参考。  相似文献   

4.
改性木质素/PBAT复合材料的制备及其性能   总被引:1,自引:0,他引:1  
以聚己二酸丁二醇酯-对苯二甲酸丁二醇酯(PBAT)为基材,以木质素磺酸(LS)及其与马来酸酐(MA)的接枝产物(MLS)为填料,通过熔融共混法分别制备了LS/PBAT和MLS/PBAT两种复合材料。利用FT-IR,TG,DSC,SEM和电子万能试验机对所制备复合材料进行了表征与测试。结果表明,与未改性的LS相比,MLS在与PBAT共混时具有更好分散性、相容性及热稳定性。随着MLS含量的增加,MLS/PBAT的初始分解温度T0有小幅降低,最大分解速率温度Tmax保持不变,熔融结晶温度Tc先上升后下降,复合材料拉伸强度和断裂伸长率先增大后减小。综合填充量和力学性能考虑,最佳配比为:mMLS/mPBAT=10/90,此时拉伸强度增大10.0%,断裂伸长率提高29.1%。  相似文献   

5.
为了改善聚对苯二甲酸丁二醇酯(PBT)的阻燃性能,采用先机械球磨共混、后熔融注塑的方法制备了Sb2O3/BPS-PBT复合材料.研究了Sb2O3粒径对复合材料阻燃性能的影响,并分析了复合材料的阻燃机理.结果表明:Sb2O3使PBT初始分解温度提前,热分解速率减慢;添加相同质量分数的Sb2O3,纳米Sb2O3在气相阻燃中的效率和促进残炭形成的催化作用均优于微米Sb2O3;当溴化聚苯乙烯(BPS)和纳米Sb2O3的质量分数分别为10%和5%时,复合材料的LOI为28.3%,UL94达到V-0级.  相似文献   

6.
采用浸渍法制备了V2O5质量分数不同的V2O5/Al2O3催化剂,采用Zr对Al2O3载体进行改性并应用于催化甲醇选择性氧化制备二甲氧基甲烷(DMM)的反应中。经X-射线衍射(XRD)、扫描电子显微镜(SEM)、紫外-可见分光光谱(UV-Vis)、傅里叶变换红外光谱(FTIR)、拉曼光谱(Raman)、N2吸附-脱附(BET)、H2程序升温还原(H2-TPR)和NH3程序升温脱附(NH3-TPD)表征分析,结果表明:与单一Al2O3负载的钒基催化剂相比,Zr改性提高了钒氧化物的分散性与稳定性,加强了催化剂中各组分间的相互作用,有效调变了催化剂的酸性和氧化性,进而提高了DMM的选择性。考察了反应条件对甲醇选择性氧化制备DMM的影响,最佳反应温度为175 ℃,经20%V2O5/12%ZrO2-Al2O3催化氧化,甲醇转化率为27.9%,DMM选择性为99.9%。  相似文献   

7.
将植物纤维(如玉米秸秆)经相应工序处理后获得所需的植物纤维材料PF,利于微生物降解并提高与其它物料的相溶性能.以锆类偶联剂为改性剂对PF进行改性,以模压成型工艺制备PBS/PLA/PF复合材料(MC).当PBS/PLA质量比为1∶1,PF在全部复合材料中的比例为0~45%时,复合材料MC的冲击强度、拉伸强度、弯曲强度和硬度均逐步上升并达到最大值,随后下降;偶联剂为PF重量的0.5%时,复合材料的各项性能指标分别达到最大值;植物纤维自身的含水率对复合材料的力学性能也有较大影响.  相似文献   

8.
为提高Bi负极材料的循环性能,提出了一种Bi/Bi2O3碳纳米复合纤维(Bi/Bi2O3-CNFs)的合成方法。以Bi2S3纳米棒为模板,采用静电纺丝技术及后续高温热处理方法成功合成了具有纵孔结构的Bi/Bi2O3(w)-CNFs。采用扫描电子显微镜(SEM)、X射线衍射(XRD)、热重分析(TGA)、透射电子显微镜(TEM)和X-射线光电子能谱(XPS)对复合材料进行了表征。讨论了不同质量分数的Bi2S3对复合材料结构以及电化学性能的影响。结果表明:当添加8.7%(质量分数)的Bi2S3时,合成的Bi/Bi2O3(8.7%)-CNFs拥有最佳的电化学储锂性能。当充放电电流密度为0.1 A/g时,Bi/Bi2O3(8.7%)-CNFs复合材料首次放电比容量可达到806 mA·h/g,并能稳定循环1 000次,即使在5.0 A/g的大电流密度下,储锂容量仍有147 mA·h/g。Bi/Bi2O3(8.7%)-CNFs复合结构改善了充放电过程的动力学性能,提高了电化学性能。碳纤维及内部纵孔结构缓解了充放电过程中电极材料的体积膨胀,增强了电池的循环稳定性。  相似文献   

9.
制备了甲基丙烯酸缩水甘油醚(GMA)接枝乙烯-醋酸乙烯共聚物(GEVA)和马来酸酐(MA)功能化改性淀粉(MST),并利用红外光谱(FT-IR)和核磁共振谱(NMR)对二者的结构进行了表征。采用熔融共混法制备了聚乳酸(PLA)/MST/GEVA复合材料,其中固定MST和GEVA的质量分数均为20%。通过拉伸、冲击、扫描电镜(SEM)、差示扫描量热(DSC)等测试方法对复合材料的性能进行了研究。结果表明:GEVA的加入使复合材料的韧性得到明显改善,断裂伸长率最高可达170%,冲击强度提高了400%左右;随着GEVA接枝率的提高,淀粉逐渐被GEVA相包覆,促进了淀粉在PLA基体中的分散;同时复合材料的吸水性降低,结晶能力减弱。  相似文献   

10.
首先以粉煤灰(FA),Fe(NO3)3?9H2O和Ni(NO3)2?6H2O为原料,采用改性的溶胶-凝胶方法,制备了以FA为核,以NiFe2O4为壳的核壳填料。然后,以硅橡胶为基体,采用FA/NiFe2O4核壳填料对其填充改性,制备了硅橡胶吸波复合材料。X射线衍射、红外光谱、X射线光电子能谱和扫描电子显微镜结果表明,NiFe2O4成功包覆在FA表面,且包覆均匀致密。核壳填料显著改善了硅橡胶的吸波性能, 17.5 GHz 下,材料的最小反射损耗值为?23.8 dB,有效吸收带宽高达12 GHz,原因为多重损耗机理,即界面极化损耗、磁损耗和多重反射损耗。与未填充的硅橡胶相比,硅橡胶吸波复合材料的热稳定性、柔韧性、耐环境性和疏水性均有所提高。本工作对粉煤灰的回收再利用和硅橡胶吸波复合材料的制备提供了新的思路。  相似文献   

11.
熔渣粘度对冶炼过程中渣金反应的传质有着至关重要的作用,适当的熔渣粘度能够有效促进渣金反应,提升传质效率。为了促进含铬熔渣中铬的回收利用,本文使用柱体旋转法研究了Al2O3含量变化对CaO-SiO2-Cr2O3-Al2O3渣粘度和结构的影响规律。熔渣在高温下表现出良好的牛顿流体行为。当Al2O3含量从0%增加到10wt%时,酸性渣的粘度首先从0.825增加到1.141 Pa·s,然后当Al2O3含量进一步增加到15wt%时,粘度降低到1.071 Pa·s。当Al2O3含量从0增加到15wt%时,碱性炉渣的粘度首先从0.084增加到0.158Pa·s,然后当Al2O3含量进一步增加到20wt%时,粘度降低到0.135 Pa·s。此外,含Cr2O3的炉渣比无Cr2O3的炉渣需要更少的Al2O3才能达到最大粘度;对于酸性和碱性炉渣,熔渣粘度达到最大值所需的Al2O3含量分别为10%和15%。熔渣的活化能变化规律与粘度结果一致。拉曼光谱表明,熔渣中仅有少量Al2O3时,Al以[AlO4]四面体形式出现,随着Al2O3含量的逐渐增加,[AlO4]四面体被[AlO6]八面体所取代,对硅酸盐结构的分峰解谱结果也与粘度结果一致。  相似文献   

12.
高炉渣系各组元活度对高炉冶炼和产品质量具有重要的影响作用. 基于分子-离子共存理论,建立CaO-SiO2-MgO-Al2O3四元渣系Al2O3活度预测模型;结合试验测定值对其进行验证与修正,最终建立了修正的CaO-SiO2-MgO-Al2O3四元渣系Al2O3活度预测模型;同时,依据模型计算结果探究R(w(CaO)/w(SiO2)),w(MgO)/w(Al2O3)和w(Al2O3)对Al2O3活度的影响. 研究结果表明:修正后的CaO-SiO2-MgO-Al2O3四元渣系Al2O3活度预测模型具有较高的预测精度,能够很好地预测熔渣Al2O3活度;当w(MgO)/w(Al2O3)=0.40,w(Al2O3)=20%时,随着R增加,Al2O3活度逐渐减小;当R=1.25,w(Al2O3)=20%时,随着w(MgO)/w(Al2O3)增加,Al2O3活度逐渐减小;当w(MgO)/w(Al2O3)=0.40,R=1.25时,随着w(Al2O3)增加,Al2O3活度逐渐增大.  相似文献   

13.
为了开发具有高发光效率和高测温灵敏度的光学温度传感材料,采用高温固相法合成了一系列Cr3+掺杂Y3Al5O12-xAl2O3(x=0,0.5,1.25,2,2.75,3.5)固熔体。利用X射线衍射、扫描电子显微镜、傅里叶红外光谱、稳态激发和发射光谱表征,详细研究了Y3Al5O12中Al2O3的掺杂浓度对其结构和发光性能的影响。研究表明,提高Al2O3掺杂量可以增加固熔体中的八面体配位,同时削弱了晶体场强度,有利于Cr3+的发光。在303~773 K温度范围内,利用该材料中Cr3+荧光寿命以及热耦合能级荧光强度比的温度依赖特性进行测温研究,两种方法的相对测温灵敏度分别在500 K时达到最大值0.802%K-1,在303 K时达到最大值0.97...  相似文献   

14.
采用熔融共混法制备了聚乳酸(PLA)/聚氨酯(PU)/聚乙烯吡咯烷酮(PVP)复合材料,利用红外光谱(FTIR)、扫描电镜(SEM)、偏光显微镜和降解性能测试对其结构和性质进行了表征分析.结果表明:PU和PVP在基体PLA中可均匀分散且有效结合,该复合材料的拉伸强度可达69.18 MPa,断裂伸长率可提高1倍.降解实验表明,复合材料在不同介质中均呈现出随降解时间的延长,质量不断降低的趋势.  相似文献   

15.
采用商业磁铁矿铁精粉(Fe3O4),设计了提纯和制备工艺,成功制备出质量分数为99.5%以上、分散性良好的α-Fe2O3纳米粒子,对其提纯、制备工艺及机理进行了深入研究.结果表明:wNaOH对除硅效果影响显著,当wNaOH为39%时,可使原料矿粉中wSiO2由1.11%降至0.032%,得到较纯铁精粉;随烧结温度的升高,α-Fe2O3颗粒的结晶度、形貌特征及磁性能随之发生变化;当烧结温度为670℃时,α-Fe2O3颗粒综合性能最佳,颗粒结晶度较高、分散性较好,具有亚铁磁性;通过对氢氧化铁沉淀物加热搅拌时间的控制,可有效调控α-Fe2O3的晶粒尺寸;当搅拌时间为60 min时,获得分散性好、平均粒径仅为35.3 nm的α-Fe2O3纳米粒子.  相似文献   

16.
通过溶剂热法合成了La-Co共掺杂的Ba1-xLaxFe12-xCoxO19(x=0、0.1、0.15、0.2和0.25)系列纳米材料样品.X-射线衍射分析结果发现:低掺杂量制备的样品是单相的,但随着La-Co掺杂量的增加,出现了第2相LaFeO3.用扫描电子显微镜观察了样品的微观形貌,在低掺杂量时,样品呈现明显的片状六角结构,具有较好的分散性.随着掺杂浓度的升高,样品的六角形形貌变得不明显,而且颗粒出现了明显的团聚现象.磁性测量表明:当La-Co掺杂量x=0.1时,矫顽力达到最大值为5 831 Oe,且饱和磁化强度降低缓慢,几乎不变; 随着La-Co掺杂量的进一步增加,饱和磁化强度和矫顽力均出现不同程度的降低,这可能源于La-Co离子掺杂效应和第2相LaFeO3的出现.研究结果揭示了适量的La-Co掺杂BaFe12O19六角铁氧体在高密度磁存储方面具有潜在的应用前景.  相似文献   

17.
采用PVC粘合成型技术对实验室合成的Li4Mn5O12粉体进行成型,制备出直径约为3.5mm的球形PVC-Li4Mn5O12复合材料,并通过SEM、孔径分布、吸附动力学和选择性测试等手段研究成型前后离子筛的形貌和吸附性能。结果表明:PVC-Li4Mn5O12复合样品中的离子筛仍为纳米棒;且球形离子筛具有较大的比表面积,在模拟卤水中对Li+具有良好的选择性吸附性能。  相似文献   

18.
采用硬模板法制备比表面积大的介孔LaAl1-xNixO3钙钛矿催化剂,将其用于碳中和甲烷干重整领域,研究不同温度下的反应活性。通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射仪(XRD)、N2吸附-脱附(BET)、H2程序升温还原(H2-TPR)、热重分析(TGA)对制备的催化剂进行表征。结果表明:LaAl0.5Ni0.5O3催化剂在反应过程中表现出了最优异的活性与稳定性。在反应温度为750 ℃,空速GHSV=36 000 mL/(g·h)的反应条件下, CH4与CO2的转化率分别达到69.8%和81.5%,经25 h稳定性测试后CH4与CO2的转化率仅分别降低2.7%和3.3%。这是由于在H2-Ar混合气还原过程中,LaAl0.5Ni0.5O3催化剂获得了比LaAl0.7Ni0.3O3催化剂更多的Ni活性位点,同时获得了比LaAl0.3Ni0.7O3催化剂更优异的抗烧结、抗积碳性能。  相似文献   

19.
六铝酸钙(CA6)作为一种具有优异综合性能的高温陶瓷备受关注。然而,CA6独特的磁铅石结构容易导致晶粒各向异性生长形成板片状,不利于CA6烧结致密化,当用作钢包内衬耐火材料时易因气孔率高导致其耐熔渣侵蚀和渗透能力下降。因此,提高CA6的烧结致密性是目前亟需解决的问题。已有研究表明,第二相的加入是提高材料致密化的有效方法之一。受此启发,本文分别采用一步法和两步法在CA6中加入不同量的AlON来提高CA6的致密度进而提升其抗渣性能。其中,以Al2O3、CaCO3和Al的混合物为原料的一步法制备过程中容易形成AlON团簇,最终导致CA6/AlON复合材料孔隙率偏高。采用两步法时,先分别制备CA6和AlON,然后将两者混匀并再次进行烧结,可形成CA6和AlON均匀分布的复合材料。进一步通过实验优化,两步法中AlON的最佳添加量被确定为10wt%。在此条件下,CA6/AlON复合材料的显气孔率(20%)相较于纯CA6(29%)得到了明显改善。最后,以纯CA6为对照组的试验表明,采用两步法制备的CA6/AlON复合材料具有更好的抗熔渣腐蚀性能。原因主要有以下两个方面:(1)AlON的加入会在很大程度上减少CA6/AlON复合材料的孔隙率,并且会降低复合材料在熔渣中的润湿性;(2)AlON会被熔渣释放的O2?离子氧化生成Al2O3,Al2O3与Ca2+和O2?离子发生反应,形成致密连续的CA2层,可有效抑制熔渣的进一步渗透和腐蚀,从而提高CA6/AlON复合材料的抗渣性能。  相似文献   

20.
以钛酸酯为偶联剂,PP为基体,通过熔融共混法制备了木粉/PP复合材料。研究了偶联剂含量变化对复合材料力学性能及流动性能的影响,采用扫描电镜(SEM)观察了复合体系的冲击断面形貌。结果表明:当偶联剂含量为2%时,35%木粉/PP复合材料体系的拉伸强度和弯曲强度达到最大值,SEM照片表明偶联剂的加入改善了木粉与PP基体的界面结合,但由于木粉团聚,导致复合材料缺口冲击强度下降。偶联剂的加入改善了木粉/PP复合材料的加工流动性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号