首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T lymphocytes are predisposed to recognition of foreign protein fragments bound to cell-surface molecules encoded by the major histocompatibility complex (MHC). There is now compelling evidence that this specificity is a consequence of a selection process operating on developing T lymphocytes in the thymus. As a result of this positive selection, thymocytes that express antigen receptors with a threshold affinity for self MHC-encoded glycoproteins preferentially emigrate from the thymus and seed peripheral lymphoid organs. The specificity for both foreign antigen and MHC molecules is imparted by the alpha and beta chains of the T-cell antigen receptor (TCR). Two other T-cell surface proteins, CD4 and CD8, which bind non-polymorphic regions of class II and class I MHC molecules respectively, are also involved in these recognition events and play an integral role in thymic selection. In order to elucidate the developmental pathways of class II MHC-restricted T cells in relation to these essential accessory molecules, we have produced TCR-transgenic mice expressing a receptor specific for a fragment of pigeon cytochrome c and the Ek (class II MHC) molecule. The transgenic TCR is expressed on virtually all T cells in mice expressing Ek. The thymuses of these mice contain an abnormally high percentage of mature CD4+CD8- cells. In addition, the peripheral T-cell population is almost exclusively CD4+, demonstrating that the MHC specificity of the TCR determines the phenotype of T cells during selection in the thymus.  相似文献   

2.
P Kisielow  H S Teh  H Blüthmann  H von Boehmer 《Nature》1988,335(6192):730-733
Thymus-derived lymphocytes (T cells) recognize antigen in the context of class I or class II molecules encoded by the major histocompatibility complex (MHC) by virtue of the heterodimeric alpha beta T-cell receptor (TCR). CD4 and CD8 molecules expressed on the surface of T cells bind to nonpolymorphic portions of class II and class I MHC molecules and assist the TCR in binding and possibly in signalling. The analysis of T-cell development in TCR transgenic mice has shown that the CD4/CD8 phenotype of T cells is determined by the interaction of the alpha beta TCR expressed on immature CD4+8+ thymocytes with polymorphic domains of thymic MHC molecules in the absence of nominal antigen. Here we provide direct evidence that positive selection of antigen-specific, class I MHC-restricted CD4-8+ T cells in the thymus requires the specific interaction of the alpha beta TCR with the restricting class I MHC molecule.  相似文献   

3.
The crucial role of the thymus in immunological tolerance has been demonstrated by establishing that T cells are positively selected to express a specificity for self major histocompatibility complex (MHC), and that those T cells bearing receptors potentially reactive to self antigen fragments, presumably presented by thymic MHC, are selected against. The precise mechanism by which tolerance is induced and the stage of T-cell development at which it occurs are not known. We have now studied T-cell tolerance in transgenic mice expressing a T-cell receptor with double specificities for lymphocytic choriomeningitis virus (LCMV)-H-2Db and for the mixed-lymphocyte stimulatory (MIsa) antigen. We report that alpha beta TCR transgenic mice tolerant to LCMV have drastically reduced numbers of CD4+CD8+ thymocytes and of peripheral T cells carrying the CD8 antigen. By contrast, tolerance to MIsa antigen in the same alpha beta TCR transgenic MIsa mice leads to deletion of only mature thymocytes and peripheral T cells and does not affect CD4+CD8+ thymocytes. Thus the same transgenic TCR-expressing T cells may be tolerized at different stages of their maturation and at different locations in the thymus depending on the antigen involved.  相似文献   

4.
Participation of CD4 coreceptor molecules in T-cell repertoire selection.   总被引:10,自引:0,他引:10  
During thymocyte development, progenitor cells bearing both CD4 and CD8 coreceptor molecules mature into functional T lymphocytes that express these proteins in a mutually exclusive way. Although T-cell specificity is determined primarily by the structure of the T-cell antigen receptor (TCR) heterodimer, a developmentally regulated process acts to ensure that cells bearing class II-restricted TCRs are CD4+ and those bearing class I-restricted TCRs express only CD8. To investigate this maturation process, we have engineered transgenic mice in which CD4 is expressed in all thymocyte subsets and in all peripheral T cells. Peripheral CD4+8+ T lymphocytes from these mice react with both class I and class II alloantigens. Moreover, expression of the CD4 transgene disrupts the positive selection of doubly transgenic thymocytes bearing a class I-restricted TCR specific for the male (H-Y) antigen. Hence the CD4 coreceptor participates directly in T-cell repertoire selection.  相似文献   

5.
D Gay  P Maddon  R Sekaly  M A Talle  M Godfrey  E Long  G Goldstein  L Chess  R Axel  J Kappler 《Nature》1987,328(6131):626-629
Mature T cells segregate phenotypically into one of two classes: those that express the surface glycoprotein CD4, and those that express the glycoprotein CD8. The CD4 molecule is expressed primarily on helper T cells whereas CD8 is found on cytotoxic and suppressor cells. A more stringent association exists, however, between these T-cell subsets and the major histocompatibility complex (MHC) gene products recognized by their T-cell receptors (TCRs). CD8+ lymphocytes interact with targets expressing class I MHC gene products, whereas CD4+ cells interact with class II MHC-bearing targets. To explain this association, it has been proposed that these 'accessory' molecules bind to monomorphic regions of the MHC proteins on the target cell, CD4 to class II and CD8 to class I products. This binding could hold the T cell and its target together, thus improving the probability of the formation of the trimolecular antigen: MHC: TCR complex. Because the TCR on CD4+ cells binds antigen in association with class II MHC, it has been difficult to design experiments to detect the association of CD4 with a class II molecule. To address this issue, we devised a xenogeneic system in which human CD4 complementary DNA was transfected into the murine CD4-, CD8- T-cell hybridoma 3DT-52.5.8, the TCR of which recognizes the murine class I molecule H-2Dd. The murine H-2Dd-bearing target cell line, P815, was cotransfected with human class II HLA-DR alpha, beta and invariant chain cDNAs. Co-culture of the parental T-cell and P815 lines, or of one parental and one transfected line resulted in a low baseline response. In contrast, a substantial increase in response was observed when CD4+ 3DT-52.5.8 cells were co-cultured with HLA-DR+ P815 cells. This result strongly indicates that CD4:HLA-DR binding occurs in this system and that this interaction augments T-cell activation.  相似文献   

6.
T-cell differentiation in the thymus is thought to involve a progression from the CD4-CD8- phenotype through CD4+CD8+ intermediates to mature CD4+ or CD8+ cells. There is evidence that during this process T cells bearing receptors potentially reactive to 'self' are deleted by a process termed 'negative selection' One example of this process occurs in mice carrying polymorphic Mls antigens, against which a detectable proportion of T cells are autoreactive. These mice show clonal deletion of thymic and peripheral T-cell subsets that express the autoreactive V beta 3 segment of the T-cell antigen receptor, but at most a two-fold depletion of thymic cells at the CD4+CD8+ stage. By contrast, transgenic mice bearing both alpha and beta chain genes encoding autoreactive receptors recognizing other ligands, show severe depletion of CD4+CD8+ thymocytes as well, suggesting that negative selection occurs much earlier. We report here the Mls 2a/3a mediated elimination of T cells expressing a transgene encoded V beta 3-segment, in T-cell receptor alpha/beta and beta-transgenic mice. Severe depletion of CD4+CD8+ thymocytes is seen only in the alpha/beta chain transgenic mice, whereas both strains delete mature V beta 3 bearing CD4+ and CD8+ T cells efficiently. We conclude that severe CD4+CD8+ thymocyte deletion in alpha/beta transgenic mice results from the premature expression of both receptor chains, and does not reflect a difference in the timing or mechanism of negative selection for Mls antigens as against the allo- and MHC class 1-restricted antigens used in the other studies.  相似文献   

7.
L A Matis  R Cron  J A Bluestone 《Nature》1987,330(6145):262-264
Several recent studies have identified a distinct subset of CD3(T3)+CD4-CD8-T lymphocytes that express a CD3-associated heterodimer made up of the protein encoded by the T-cell receptor (TCR) gamma-gene and a second glycoprotein termed TCR delta (refs 1-4). TCR gamma delta is expressed on CD3+ thymocytes during fetal ontogeny before the appearance of TCR alpha-beta (alpha beta) (refs 5-7), on CD3+CD4-CD8- adult thymocytes, and on a subset (1-10%) of CD3+ cells in adult peripheral lymphoid organs and the peripheral blood. TCR gamma delta-expressing T cells probably represent a distinct mature T-cell lineage with the capacity to proliferate in response to receptor-mediated signals, and to display non-major histocompatibility complex (MHC)-restricted cytolysis. Critical to understanding the function of this T-cell subset is the identification of the ligand(s) recognized by TCR gamma delta. Here we describe an alloreactive CD3+CD4-CD8-TCR gamma delta-expressing, TCR alpha beta-negative, T-cell line that manifests MHC-linked recognition specificity for both proliferation and cytotoxicity. Our results suggest that T cells expressing TCR gamma delta are capable of self-non-self MHC discrimination and that they can undergo MHC-influenced selection during differentiation like TCR alpha beta-expressing T cells.  相似文献   

8.
Beta 2-microglobulin deficient mice lack CD4-8+ cytolytic T cells   总被引:44,自引:0,他引:44  
Mice homozygous for a beta 2-microglobulin gene disruption do not express any detectable beta 2-m protein. They express little if any functional major histocompatibility complex (MHC) class I antigen on the cell surface yet are fertile and apparently healthy. They show a normal distribution of gamma delta, CD4+8+ and CD4+8- T cells, but have no mature CD4-8+ T cells and are defective in CD4-8+ T cell-mediated cytotoxicity. Our results strongly support earlier evidence that MHC class I molecules are crucial for positive selection of T cell antigen receptor alpha beta+ CD4-8+ T cells in the thymus and call into question the non-immune functions that have been ascribed to MHC class I molecules.  相似文献   

9.
T-cell receptors and T-cell subsets were analysed in T-cell receptor transgenic mice expressing alpha and beta T-cell receptor genes isolated from a male-specific, H-2Db-restricted CD4-8+ T-cell clone. The results indicate that the specific interaction of the T-cell receptor on immature thymocytes with thymic major histocompatibility complex antigens determines the differentiation of CD4+8+ thymocytes into either CD4+8- or CD4-8+ mature T cells.  相似文献   

10.
Human cluster-of-differentiation 1 (CD1) is a family of cell surface glycoproteins of unknown function expressed on immature thymocytes, epidermal Langerhans cells and a subset of B lymphocytes. Three homologous proteins, CD1a, b and c, have been defined serologically, and the CD1 gene locus on human chromosome 1 contains five potential CD1 genes. Analysis of the predicted amino-acid sequences of CD1 molecules reveals a low but significant level of homology to major histocompatibility complex (MHC) class I and class II molecules, and, like MHC class I molecules, CD1 molecules are associated non-covalently with beta 2-microglobulin. These structural similarities to known antigen-presenting molecules, together with the expression of CD1 on cells capable of antigen presentation, suggest a role for CD1 molecules in antigen recognition by T cells. Here we demonstrate the specific recognition of CD1a by a CD4-CD8- alpha beta T-cell receptor (TCR) expressing cytolytic T lymphocyte (CTL) line and the specific recognition of CD1c by a CD4-CD8- gamma delta TCR CTL line. The interaction of CD1-specific CTLs with CD1+ target cells appeared to involve the CD3-TCR complex, and did not show evidence of MHC restriction. These results suggest that for a subset of T cells, CD1 molecules serve a function analogous to that of MHC class I and II molecules.  相似文献   

11.
T Goodman  L Lefran?ois 《Nature》1988,333(6176):855-858
The vast majority of mature T lymphocytes in the peripheral blood and lymphoid organs use the CD3-associated alpha, beta T-cell receptor (TCR) heterodimer for antigen recognition. A second class of TCRs consists of disulphide-linked gamma and delta proteins that are also CD3-associated. A subset of early CD3+ fetal and adult CD4- 8- thymocytes express gamma, delta TCRs before alpha, beta TCRs are detectable. In addition, a minor (1-5%) subpopulation of peripheral T lymphocytes, and some spleen cells from nude mice express gamma, delta TCRs. Notably, dendritic epidermal cells have also been shown to express gamma, delta TCRs. All of these populations lack CD4 and CD8 molecules. We now report that most mature T cells residing in the murine intestinal epithelium express CD3-associated TCRs composed of gamma-chains disulphide-linked to a protein resembling the delta-chain. The striking feature of these intraepithelial lymphocytes (IEL) was that they were exclusively CD4-8+. In addition, approximately half of CD3-bearing IEL lacked detectable Thy-1 on the cell surface, which is unprecedented for murine T cells. In contrast to other CD8+ peripheral T cells, freshly isolated IEL could be induced to display cytolytic activity by engaging the CD3 molecule, indicating that activation had occurred in vivo. Thus, CD8+ IEL are a phenotypically diverse and anatomically restricted population of lymphocytes that use gamma-chain containing heterodimers for antigen recognition.  相似文献   

12.
The mechanism of self-tolerance is studied in T-cell-receptor transgenic mice expressing a receptor in many of their T cells for the male (H-Y) antigen in the context of class I H-2Db MHC antigens. Autospecific T cells are deleted in male mice. The deletion affects only transgene-expressing cells with a relatively high surface-density of CD8 molecules, including nonmature CD4+ CD8+ thymocytes, and is not caused by anti-idiotype cells.  相似文献   

13.
B Scott  H Blüthmann  H S Teh  H von Boehmer 《Nature》1989,338(6216):591-593
THE T-cell repertoire within an individual is biased to recognize antigen in the context of self major histocompatibility complex (MHC) antigens. This is thought to depend on a process of positive selection during development. Support for this notion has recently been obtained in experiments using transgenic mice bearing genes for T-cell receptors (TCR) of defined specificity: T cells expressing the introduced genes form the main part of the mature T-cell population only in mice that express the appropriate MHC product. We have now extended these observations using TCR transgenic mice homozygous for the severe combined immunodeficiency (SCID) mutation which are defective in the rearrangement of both TCR and immunoglobulin genes. In this case mature thymocytes develop only in transgenic mice that express the MHC product which restricts the specificity of the transgenic TCR. This shows that the interaction of the alpha beta TCR with thymic MHC antigen is essential for the development of mature T cells. Furthermore, the peripheral lymph nodes of such mice are underdeveloped, suggesting that the peripheral expansion of mature T cells may require interactions with other lymphocytes expressing a range of receptors.  相似文献   

14.
During their intrathymic differentiation, T lymphocytes expressing alpha beta T-cell receptors (TCR) are negatively and positively selected. This selection contributes to the establishment of self-tolerance and ensures that mature CD4+ and CD8+ cell populations are restricted by the self major histocompatibility complex. Little is known, however, about gamma delta T-cell development. To investigate whether selection operates in the establishment of the gamma delta T-cell class, we have generated transgenic mice using gamma- and delta-transgenes encoding a TCR that is specific for a product of a gene in the TL-region of the TLb haplotype. Similar numbers of thymocytes expressing the transgenic TCR were generated in mice of TLb and TLd haplotypes. But gamma delta thymocytes from TLb and TLd transgenic mice differed in cell size, TCR density and in their capacity to respond to TLb stimulator cells or interleukin-2 (IL-2). In contrast to gamma delta T cells from TLd transgenic mice, gamma delta T cells from TLb transgenic mice did not produce IL-2 and did not proliferate in response to TLb stimulator cells, but they did proliferate in the presence of exogenous IL-2. These results indicate that functional inactivation of self-antigen-specific T cells could contribute to the establishment of self-tolerance to thymic determinants.  相似文献   

15.
R K?nig  L Y Huang  R N Germain 《Nature》1992,356(6372):796-798
Interactions between major histocompatibility complex (MHC) molecules and the CD4 or CD8 coreceptors have a major role in intrathymic T-cell selection. On mature T cells, each of these two glycoproteins is associated with a class-specific bias in MHC molecule recognition by the T-cell receptor. CD4+ T cells respond to antigen in association with MHC class II molecules and CD8+ T cells respond to antigen in association with MHC class I molecules. Physical interaction between the CD4/MHC class II molecules and CD8/MHC class I molecules has been demonstrated by cell adhesion assay, and a binding site for CD8 on class I has been identified. Here we demonstrate that a region of the MHC class II beta-chain beta 2 domain, structurally analogous to the CD8-binding loop in the MHC class I alpha 3 domain, is critical for function with both mouse and human CD4.  相似文献   

16.
The major problem in the study of T-cell development is that of tracking thymocytes of a given specificity. Recent studies have exploited natural correlations between the expression of a particular V beta gene segment and T-cell receptor (TCR) specificity. We and others (refs 5, 6 and M. Davis, personal communication) have taken an alternative approach. We have generated transgenic mice expressing the alpha beta antigen receptor from the cytotoxic T-lymphocyte clone 2C (ref. 7). In transgenic mice of the same haplotype as the 2C clone, the 2C TCR was expressed on 20-95% of peripheral T cells. Very few of these T cells carried the CD4 antigen; the vast majority were CD4-CD8+ and were able to lyse targets with the same specificity as the original 2C clone. These results indicate that the alpha beta heterodimer transfers specificity to recipient cells as expected from earlier studies, and that receptor specificity in T-cell repertoire selection is determined by both alpha beta heterodimer and CD4 or CD8 accessory molecules.  相似文献   

17.
J Bill  E Palmer 《Nature》1989,341(6243):649-651
T lymphocytes differentiate in the thymus, where functionally immature, CD4+CD8+ (double positive) thymocytes develop into functionally mature CD4+ helper cells and CD8+ cytotoxic (single positive) T cells. The thymus is the site where self-reactive T cells are negatively selected (clonally deleted) and where T cells with the capacity to recognize foreign antigens in association with self-proteins encoded by the major histocompatibility complex (MHC) are positively selected. The net result of these developmental pathways is a T-cell repertoire that is both self-tolerant and self-restricted. One unresolved issue is the identity of the thymic stromal cells that mediate the negative and positive selection of the T-cell repertoire. Previous work has pointed to a bone-marrow-derived macrophage or dendritic cell as the inducer of tolerance, whereas a radiation-resistant, deoxyguanosine-resistant thymic cell seems to mediate the positive selection of self-MHC restricted T cells. Thymic stromal cells in the cortex interact with the T-cell antigen receptor on thymocytes. Using several strains of transgenic mice that express the class II MHC molecule I-E in specific regions of the thymus, we show directly that the positive selection of T cells is mediated by an I-E-bearing cell in the thymic cortex.  相似文献   

18.
Inefficient positive selection of T cells directed by haematopoietic cells.   总被引:1,自引:0,他引:1  
M Bix  D Raulet 《Nature》1992,359(6393):330-333
Intrathymic differentiation of alpha beta TCR+ T cells depends on positive selection of CD4+CD8+ thymocytes by thymic major histocompatibility complex (MHC) molecules. Positive selection allows the maturation of only those T cells capable of restricted antigen recognition in the context of the hosts' MHC alleles. Studies of normal or T-cell receptor-transgenic mice engrafted with MHC-different bone marrow or thymuses support the conclusion that positive selection is directed by MHC molecules expressed on non-haematopoietic cells, presumably thymic epithelial cells. Here we, present contrary evidence that class I MHC molecules expressed by haematopoietic cell types direct positive selection of CD8+ T cells, though at a reduced rate compared with positive selection directed by thymic epithelial cells. The identity of cell types that direct positive selection bears directly on mechanistic models of the process, including the idea that thymic epithelial cell MHC molecules uniquely present specialized peptides that mediate positive selection, and the notion that thymic epithelial cells express unique differentiation-inducing cell surface molecules.  相似文献   

19.
Differentiation of bone marrow derived precursors into mature T cells takes place in the thymus. During differentiation, T cells develop the receptor repertoire which allows them to recognize antigen in the context of self major histocompatibility complex (MHC) molecules. Mature T helper cells (mostly CD4+ CD8-) recognize antigen in the context of class II MHC molecules, whereas cytotoxic T cells (mostly CD4-CD8+) recognize antigen in the context of class I MHC determinants. Thymic MHC-encoded determinants greatly influence the selection of the T-cell receptor repertoire. In addition to positive selection, a negative selection to eliminate self-reactive T-cell clones is thought to occur in the thymus, but how this 'education' occurs is not well understood. It has been suggested that during differentiation an interaction between the T-cell receptor (TCR) and MHC-encoded determinants occurs, leading to the selection of an MHC-restricted receptor repertoire. In support of this hypothesis, class-II-specific, CD4+ CD8- helper T cells fail to develop in mice neonatally treated with anti-class II monoclonal antibody (mAb). As CD4-CD8+ cells differ from the CD4+ CD8- lineage (in function, MHC-restriction specificity and perhaps site of education) we examined whether interactions with MHC determinants are also necessary for the development of class-I-specific T cells. Here we show that mice chronically treated with anti-class I mAb from birth lack CD4-CD8+ cells and cytotoxic T-cell precursors, indicating that most CD4-CD8+ T cells need interaction with class I MHC molecules during differentiation.  相似文献   

20.
Interleukin-4 mediates CD8 induction on human CD4+ T-cell clones   总被引:15,自引:0,他引:15  
X Paliard  R W Malefijt  J E de Vries  H Spits 《Nature》1988,335(6191):642-644
CD4 and CD8 antigens are simultaneously expressed on most of the cortical thymocytes, that weakly express the T-cell antigen receptor(TCR)/CD3 complex. Mature peripheral T cells, however, strongly express the TCR complex and are positive for either CD4 or CD8. Nevertheless, a small percentage of peripheral CD3+ T cells express CD4 and CD8 simultaneously. These mature, double positive cells could be intermediates between CD4+CD8+ thymocytes and mature, single positive T cells, or they may originate from single positive T cells that acquire either CD4 or CD8. Here we report that activation and culturing of cloned CD4+ T cells in interleukin-4 (IL-4), results in the acquisition of CD8 due to its de novo synthesis. The IL-4-induced co-expression of CD8 on CD4+ T cells is reversible, in that CD8 disappeared from double positive T-cell clones isolated in IL-4, when they were cultured in IL-2. CD8 induced by IL-4 can be functional as a monoclonal antibody to CD8 inhibited anti-CD3-mediated cytotoxicity by a double positive T-cell clone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号