首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
自升式平台齿轮齿条强度有限元分析   总被引:10,自引:2,他引:8  
基于有限元软件ANSYS建立某自升式平台升降系统齿轮齿条的三维模型,并计算平台在预压状态下齿轮齿条的应力,分析齿轮齿条在不同啮合位置时的Von mises 应力和齿面接触应力的分布情况,并将其与公式计算值进行对比.结果表明:齿轮齿条啮合过程中接触面上应力呈带状分布,最大应力出现在带状区域的两端,带状区域的中部应力相对较小;齿面和齿根是齿轮齿条啮合接触过程中容易失效的部位,升降系统齿面接触应力与齿根弯曲应力偏高,在升降系统的设计中应采取措施降低相应应力或提高材料强度;基于有限元方法的计算结果与公式计算值误差较小,可以作为该齿轮齿条强度分析的依据.  相似文献   

2.
为研究地铁列车减速器小齿轮齿根部受力情况及弯曲疲劳裂纹萌生的机理,通过建立齿轮副有限元模型,对齿轮啮合过程进行瞬态动力学分析,得到了齿轮啮合过程中齿根处的应力-时间历程进而对齿根弯曲疲劳行为进行了试验研究。瞬态动力学分析表明,小齿轮齿根处在啮合过程中受到脉动循环载荷的作用,最大拉应力出现在齿轮啮合至分度圆时;且齿根处最大主应力的方向为沿齿根切线方向。齿根弯曲疲劳试验结果表明,裂纹在齿根弧线的中间位置萌生,方向为齿根切线的垂直方向。结合有限元分析结果可发现,齿根处裂纹在最大拉应力幅值位置萌生,其扩展行为受最大拉应力的主导。为进一步优化齿轮的设计、制造工艺及材料的选择提供了依据。  相似文献   

3.
蜗轮蜗杆是碟式太阳能方位角驱动机构的重要部件,为确保方位角驱动机构能够安全平稳的工作,要求蜗轮蜗杆工作时的接触应力小于材料许用应力.本文采用参数化建模法建立了蜗轮蜗杆实体模型并导入ABAQUS中得到多齿对蜗轮蜗杆接触有限元模型;基于非线性接触分析法,探索了蜗轮蜗杆啮合瞬间接触齿面的应力分布状况.结果表明:基于ABAQUS的蜗轮蜗杆接触应力结果与赫兹接触应力理论计算结果之间误差仅为1%,蜗轮蜗杆接触应力均远低于相应材料的许用应力,但齿根处最大应力值达到了258.3 MPa,且有明显应力集中现象,而增大齿根过渡圆半径能有效降低齿根应力,增大齿轮接触强度,但当过渡圆半径大于5 mm以后,蜗轮蜗杆难以正常啮合甚至已不能正常工作.  相似文献   

4.
针对汽车行驶过程中差速器的2种典型工况,计算某轿车差速器行星齿轮和半轴齿轮的转速和转矩分配.基于有限元动态仿真方法,建立差速器齿轮接触有限元模型,进行动态啮合仿真,研究了齿轮啮合时的应力分布情况.分析了齿轮接触面间的摩擦系数对应力分布的影响,发现随着摩擦系数的增大,齿轮接触应力有所上升.基于名义应力法,以动态啮合时的最大接触应力作为载荷输入,计算齿轮的接触和弯曲疲劳寿命,齿轮的疲劳危险位置发生在齿轮齿面接触区域和齿轮齿根,齿轮寿命符合设计要求.结果表明所开发的结合齿轮动态仿真与疲劳寿命分析方法可以有效地预测差速器齿轮寿命.  相似文献   

5.
为改善面齿轮副啮合性能,采用变位插齿刀对面齿轮进行变位,建立了包含齿根过渡曲面在内的变位面齿轮全齿面理论三维几何模型,进行了承载接触分析(LTCA)和应力场分析,并以齿根弯曲应力、齿面接触应力为两个优化目标,采用带精英策略的快速非支配排序遗传算法(NSGA-Ⅱ)优化了变位系数.结果表明:面齿轮副变位对承载传动误差、齿间载荷分配、齿面载荷分布有一定影响,但承载传动误差波动幅值对变位系数并不敏感;负变位可增加重合度,并减小大轮齿根弯曲应力峰值,但齿面接触应力、小轮齿根弯曲应力峰值增大;正变位可减小齿面接触应力、小轮齿根弯曲应力峰值,但大轮齿根弯曲应力峰值增大;优化后的变位系数既提高了齿面接触强度,又使大、小轮弯曲强度趋于接近,有利于提高面齿轮副的承载能力.  相似文献   

6.
以某钢厂1580热连轧机减速机斜齿轮为研究对象,建立减速机斜齿轮的Pro/E参数化三维模型,根据斜齿轮啮合原理,对三维模型实现了无干涉装配。利用有限元分析软件,得到啮合齿接触带中心位于不同位置时齿轮的齿根最大弯曲应力和齿面最大接触应力。通过对比不同齿向修形参数下斜齿轮的应力值,确定了最佳齿向修形长度,为硬齿面斜齿轮的设计加工提供有价值的参考。  相似文献   

7.
渐开线直齿圆柱齿轮有限元仿真分析   总被引:2,自引:0,他引:2  
利用ANSYS软件对齿轮变形和齿根应力进行了有限元计算,建立了一对齿轮接触仿真分析的模型,利用ANSYS的面面接触单元进行齿轮接触仿真分析,计算了齿轮啮合中的接触应力和接触变形,说明了ANSYS在齿轮计算尤其在接触分析上的有效性,为齿轮的优化设计和可靠性设计及CAE奠定了基础.  相似文献   

8.
利用大型三维设计软件UG进行二次开发,建立了差速器的参数化造型系统,该系统能够根据输入的参数精确而快速地生成差速器齿轮的三维模型,大大提高了设计质量和设计效率.同时,将建立的差速器齿轮三维模型无缝连接到有限元软件中,对差速器齿轮进行静强度分析以及动态接触分析.分析结果表明所设计的行星齿轮和半轴齿轮最大弯曲应力在齿根部位且小于许用应力值,齿面接触应力远远小于材料许用接触应力,因此齿轮不会出现接触疲劳破坏.  相似文献   

9.
根据齿轮传动中轮齿折断和齿面点烛疲劳破坏现象,基于齿轮啮合原理,对斜齿轮啮合过程的力学性能及疲劳寿命预测进行研究,结合实例分析计算齿轮传动过程中齿面接触应力变化规律和齿根弯曲应力变化规律;利用ANSYS建立斜齿轮副有限元模型,分析齿面接触应力和齿根弯曲应力,将其与理论计算结果比较,验证有限元分析方法的正确性;利用FE-SAFE中的名义应力分析法对斜齿轮副的危险部位进行疲劳寿命预测.  相似文献   

10.
双压力角非对称齿廓齿轮齿根弯曲应力的有限元分析   总被引:3,自引:1,他引:3  
推导出双压力角非对称渐开线齿轮系统全齿廓方程,以及在单、双齿啮合上、下界点处坐标和载荷角的计算公式,编制了相应的参数化程序.对实例的有限元分析表明非对称渐开线齿轮的齿根弯曲强度比对称齿轮有较大提高.计算结果揭示了由于时变啮合刚度的影响齿根弯曲应力在一个啮合周期的变化规律.  相似文献   

11.
斜齿轮三维有限元网格和接触单元的自动生成   总被引:3,自引:0,他引:3  
提出了一种斜齿圆柱齿轮三维有限元网格自动生成的算法,研究了啮合齿廓面接触单元的自动生成。通过对轮齿端面的合理分割,该算法有效地避免了端面网格中出现大的钝角,改善了单元质量。可方便地调整轮齿不同部位网格密度,以适应弯曲应力和接触应力等不同的分析需要。全部算法和生成过程实现了程序化和参数化,在输入齿轮基本参数后即可生成三维有限元模型数据文件,可直接用于通用有限元软件完成斜齿轮弯曲强度或接触强度的计算。  相似文献   

12.
双压力角非对称齿轮传动接触分析   总被引:5,自引:0,他引:5  
推导出双压力角非对称齿轮在单、双齿啮合上、下界点和节点的综合曲率半径和齿面接触应力的计算公式,并用解析法对给定参数进行计算. 用Autolisp语言开发了非对称与对称齿轮全齿模型的参数化设计程序,将生成的全齿模型导入ANSYS进行有限元分析. 两种方法均得出非对称齿轮能有效提高轮齿齿面接触强度的结论. 揭示了由于时变啮合刚度以及啮合点曲率半径的影响,齿面接触应力在一个啮合周期的变化规律,同时对两种方法的结果进行比较.  相似文献   

13.
高重合度齿轮应力场有限元分析   总被引:1,自引:0,他引:1  
基于弹塑性接触有限元理论,建立了高重合度齿轮副的三维静态有限元分析模型,运用牛顿-拉普森方法进行求解,得到了高重合度斜齿轮接触应力沿接触线的分布状态。通过实例分析了啮合数对齿间载荷分配系数的影响,研究了不同摩擦系数时摩擦应力的分布状态。对有限元分析结果与Hertz公式计算值对比显示,前者计算的最大接触应力小于Hertz应力。运用分块Lanczos法分析了小齿轮的模态,计算了低阶固有频率和主振型。  相似文献   

14.
基于综合变位与节锥外啮合原理,提出了一种高减比、少齿数弧齿锥齿轮设计方法,阐述了节锥外啮合的轮齿几何演变规律。根据等弯曲强度和轮齿几何约束条件,选取了合适的变位系数,完成了齿轮副几何参数计算。以齿数比4∶41的弧齿锥齿轮为例,建立了精确的三维轮齿模型。通过动态有限元仿真,得到了齿面瞬时接触椭圆、接触应力与齿根弯曲应力。最后,通过切齿和滚检试验,验证了节锥外啮合设计的齿数比4∶41的弧齿锥齿轮副在理论和实践上的可行性。  相似文献   

15.
针对风电齿轮在实际应用中由于应力过大导致的失效率高的问题,采用参数化方法精确建立了风电增速齿轮模型,应用ANSYS Workbench软件,在考虑摩擦力影响的情况下,分析了摩擦因数对风电增速齿轮接触应力和接触变形的影响.结果表明:在齿轮啮合过程中,齿根附近出现应力集中,并且出现最大应力值;当摩擦因数小于0.3时,接触应力和接触变形随着摩擦因数的增大而急剧增大,并呈现出线性变化趋势;当摩擦因数大于0.3时,接触应力随着摩擦因数的增大而缓慢增大,而接触变形随着摩擦因数的增大略有减小,呈现出非线性变化趋势.该研究结果对提高风电齿轮强度的分析、改进和优化设计具有一定的参考价值.  相似文献   

16.
利用有限元软件ANSYS的建模功能,建立渐开线标准直齿圆柱齿轮的二维和三维有限元模型。在此基础上对静载荷作用下齿轮的齿根应力和齿轮变形进行有限元分析,比较二维模型和三维模型的模拟结果,并与传统的齿轮强度计算方法作比较。同时在ANSYS/LS-DYNA程序中研究冲击载荷作用下齿轮的齿根应力随冲击脉冲时间变化的情况。  相似文献   

17.
用三维有限元法对五种齿形的81型双圆弧齿轮的齿根弯曲应力进行了计算,分别得到了它们的齿根应力公式。并把这五种齿形的齿根应力公式统一成一个通用公式,从而得出齿形系数(Y_F)随齿数变化的曲线。该公式的计算结果和由电测法得到的结果吻合较好。可以作为81型齿轮弯曲强度计算的基本公式。  相似文献   

18.
为提高渐开线齿轮齿根承载能力,研究了喷丸强度、喷丸覆盖率、电解抛光对齿根圆角表面完整性和齿轮弯曲疲劳极限的影响规律.依据啮合原理和APDL语言,对齿条型刀具展成的齿轮进行了参数化有限元建模,应用ANSYS/FE-SAFE软件对齿轮进行弯曲疲劳强度的仿真计算,并通过单齿弯曲疲劳试验进行了验证.结果表明:通过软件仿真的渗碳淬火齿轮弯曲疲劳极限载荷与试验结果相比偏大;对齿轮齿根进行喷丸,并非喷丸强度和喷丸覆盖率越高越好,而是存在最佳的喷丸工艺参数;对齿轮喷丸后再进行电解抛光,可以改善表面完整性,进一步提高齿轮的弯曲疲劳强度,但强化效果受初始喷丸工艺参数的影响.  相似文献   

19.
本文应用二维弹性力学的边界元法,首次对渐开线直齿圆柱齿轮轮齿在多种啮合状态下的接触应力和弯曲应力进行了全面综合分析计算。得到了轮齿在不同啮合状态下的接触应力和弯曲应力的分布规律。计算结果与传统计算方法进行了比较;与实验结果吻合较好。因而为齿轮的接触强度和弯曲强度计算提供了新的途径。  相似文献   

20.
渐开线直齿轮轮齿载荷及应力计算方法   总被引:1,自引:0,他引:1  
齿轮在工作过程中,由于存在单对齿与双对齿的交替啮合、齿轮的啮合点位置不断发生变化、齿轮在啮合中产生弹性变形等原因,使得齿轮的载荷十分复杂,要精确计算齿轮啮合过程的受力较为困难。对渐开线直齿轮的啮合过程进行了分析,建立了齿间载荷分布的基本力学模型,分析了齿轮啮合过程的变形协调关系,推导了参与啮合的轮齿所发生的各种挠曲变形和弹性接触变形的计算模型,进而建立了能够精确计算齿轮啮合过程中受力的计算方法。通过一个具体的计算实例,计算了齿轮啮合过程中齿面受力、齿根应力和齿面接触应力的变化规律,并用曲线进行描述。此计算方法能够较为精确地计算齿轮在啮合过程中不同位置的受力和应力,为精确进行渐开线齿轮的力学分析提供了一种有效的新方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号