首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用试验方法研究了减水剂对纳米SiO_2混凝土抗压强度及抗渗性能的影响.研究结果表明:混凝土的抗渗性能随着减水剂的增加而明显提升,如掺量为1%与3%减水剂的纳米SiO_2混凝土其渗水高度值由140mm左右降至100mm左右;减水剂在一定范围内增加能提高混凝土的抗压强度,掺量为1%的纳米SiO_2混凝土由前期的9.6 MPa提升到了23.2 MPa,虽与未掺减水剂的强度比略差,但其强度在后期都会有显著提升,当减水剂掺量为3%时强度后期明显降低,侧面表明减水剂掺量并不是越多越好,要根据混凝土配合比调试才能得到最适宜的量,才能发挥混凝土最大效益.  相似文献   

2.
为探究纳米CaCO_3和PVA(聚乙烯醇)纤维对混凝土的抗弯拉强度和抗弯拉弹性模量的影响,采用三分点加载试验方法测试混凝土的抗弯拉强度和抗弯拉弹性模量。研究结果表明:在纳米CaCO_3混凝土中掺入PVA纤维,可以显著提高混凝土抗弯拉强度,在试验PVA纤维掺量范围内,随着PVA纤维掺量的增加,混凝土的抗弯拉强度和抗弯拉弹性模量均呈现先增大后减小的趋势;当PVA纤维掺量为0.05%时,其抗弯拉强度和抗弯拉弹性模量均达到最大值;在混凝土中掺加适量的纳米CaCO_3(3%),随着纳米CaCO_3掺量的增加,混凝土的抗弯拉强度和抗弯拉弹性模量逐渐增加,当纳米CaCO_3掺量超过3%时,随着纳米CaCO_3掺量的增加,其抗弯拉强度和抗弯拉弹性模量逐渐减小。  相似文献   

3.
为了提高大掺量橡胶颗粒砂浆的力学强度,推进橡胶砂浆在实际工程中的应用,试验采用外掺纳米SiO_2的方法对橡胶砂浆进行改性,研究不同掺量纳米SiO_2对橡胶砂浆的孔隙率、密度、抗压强度与抗折强度以及试块的干缩和自收缩性能的影响。试验结果表明,纳米SiO_2的加入能够有效降低橡胶砂浆孔隙率,提高其密度及抗压强度与抗折强度,但在纳米SiO_2掺量小于3%时,强度提升幅度随纳米SiO_2掺量增加明显增加,在纳米SiO_2掺量大于3%时,其强度增长幅度变缓。橡胶等体积替代30%砂的条件下,纳米SiO_2最佳掺量为水泥质量的3%;纳米SiO_2在提高橡胶砂浆抗压与抗折强度的同时也加大了试块的收缩,增大了砂浆的开裂风险,故在今后的研究中仍需进一步综合考量。  相似文献   

4.
通过试验研究不同再生骨料取代率(0%,30%,50%)、橡胶掺量(0%,5%,10%,15%)及纳米SiO_2掺量(0%,1.5%,3%,5%)对橡胶再生混凝土力学性能的影响.结果表明,再生骨料取代率及橡胶掺量的增加弱化了水泥基体与骨料之间的黏结,制约着橡胶再生混凝土抗压及抗拉强度的发展,纳米SiO_2的掺入可以显著改善橡胶再生混凝土微观结构,显著提升橡胶再生混凝土的力学性能.从而证实,掺加纳米SiO_2是改善橡胶再生混凝土力学性能的有效可行途径.  相似文献   

5.
基于新提出的纳米二氧化硅水泥净浆二次改性再生骨料方法,通过混凝土单轴受压动态力学试验,获得了不同应变率(10-5s-1、10-3s-1、10-1s-1)、不同改性方法(纳米二氧化硅水泥净浆二次改性、纳米二氧化硅粉煤灰复合改性、纳米二氧化硅预浸泡)的再生混凝土单轴受压应力-应变曲线,分析对比了改性前后应力-应变曲线特征。结果表明,新的改性方法能够有效改善再生混凝土力学性能,准静态下峰值应力提升25.1%,弹性模量增加85.8%。改性后再生混凝土的峰值应力和弹性模量动态增长因子降低,而峰值应变动态增长因子提高。最后,提出了改性后再生混凝土动态应力-应变本构模型,对比结果显示,模型预测曲线与试验曲线吻合较好,能为工程设计和应用提供依据。  相似文献   

6.
为探索活性基团对纳米SiO_2颗粒改性环氧胶黏剂力学性能的影响,制备性能优良的纳米颗粒环氧树脂结构胶黏剂,研究了环氧树脂分别掺入氨基修饰的纳米SiO_2颗粒(SiO_2—NH_2)、甲基丙烯修饰的纳米SiO_2颗粒(SiO_2—C_4H_8)和无活性基团纳米SiO_2颗粒(SiO_2—0)胶黏剂的胶体力学性能。通过超声波细胞粉碎仪对纳米颗粒进行分散,制备了分别掺入3种纳米SiO_2颗粒、掺量(质量分数,下同)为0%、0.01%、0.02%、0.05%、0.1%、0.2%、0.5%的十六类改性环氧胶黏剂,测试了胶黏剂的弯曲性能和拉伸性能,分析了试件的几种主要破坏形态,利用扫描电子显微镜(SEM)观察纳米颗粒在环氧树脂中的拉伸断面形貌及分散情况。研究结果表明:当纳米SiO_2颗粒掺量从0%增加到0.05%时,胶黏剂的轴拉性能逐渐提升,然后随纳米SiO_2颗粒掺量增加而下降;当SiO_2颗粒掺量为0.05%时,SiO_2—NH_2、SiO_2—C_4H_8和SiO_2—0的拉伸强度较纯环氧胶黏剂胶体分别提高了47.60%、47.63%和36.12%,弯曲强度在SiO_2—NH_2、SiO_2—C_4H_8和SiO_2—0掺量分别为0.05%、0.05%、0.1%时最大,较纯环氧胶黏剂胶体分别提高了48.52%、62.20%和34.92%;胶体拉伸断面SEM分析表明,掺量为0.05%的纳米SiO_2颗粒有效分散在环氧树脂中,纳米SiO_2颗粒的加入能改变断面的粗糙度,纳米颗粒附近的基体产生明显的塑性变形,拉伸试件的断裂形式由脆性断裂转变为韧性断裂,胶黏剂的强度与韧性得到提升;过多的纳米SiO_2颗粒加入会让其在树脂中出现团聚现象,致使胶体力学性能急剧下降。  相似文献   

7.
将硅烷偶联剂KH-560接枝到纳米SiO_2表面,用偶氮二异丁腈(AIBN)引发单体甲基丙烯酸甲酯(MMA)发生自由基聚合包覆纳米SiO_2,通过计算接枝率确定纳米SiO_2改性的最佳工艺条件,并对其进行红外表征.改性后的纳米SiO_2作为填料,通过双辊开炼制备聚丙烯基纳米复合材料,研究了填料添加量对复合材料的力学性能和结晶性能的影响.实验结果表明,纳米SiO_2改性的最佳工艺条件为:引发剂用量为2%,反应物质量比(单体MMA:纳米SiO_2)为2:1,改性时间为5 h;当聚丙烯与填料的质量比为100:3时,复合材料的拉伸强度达到最大值34.19 MPa,缺口冲击强度达到最大值2 kJ·m~(-2),与纯聚丙烯相比,拉伸强度和缺口冲击强度分别提高了25.7%和19.8%。  相似文献   

8.
采用旋转流变仪测定η-γ流变曲线,以触变指数为表征量,并结合正交试验方法,研究了有机-无机复合触变剂(聚酰胺改性氢化蓖麻油、纳米有机蒙脱土和纳米SiO_2)的质量配比与质量添加量对高填充氧树脂a、b两组分流变性能的影响.结果表明,环氧a组分中复合触变剂Ⅰ的最佳质量配比为聚酰胺改性氢化蓖麻油∶纳米有机蒙脱土∶纳米SiO_2=4∶4∶3,最佳质量添加量为2%;环氧b组分中复合触变剂Ⅱ的最佳质量配比为聚酰胺改性氢化蓖麻油∶纳米有机蒙脱土∶纳米SiO_2=10∶15∶2,最佳质量添加量为3%.  相似文献   

9.
为考察纳米高岭土对混凝土与钢筋间黏结性能的影响,利用电流加速腐蚀试验方法,研究了不同腐蚀时间下钢筋锈蚀率与纳米高岭土掺量的关系,分析了纳米高岭土改性混凝土与钢筋之间的黏结滑移关系及黏结强度的变化情况.研究结果表明:纳米高岭土改善了钢筋与混凝土间的黏结性能,降低了混凝土试件的刚度,纳米高岭土掺量为3%的混凝土试件与钢筋间的黏结强度较普通混凝土试件提高约56.55%;混凝土中内掺纳米高岭土能够延缓钢筋锈蚀,纳米高岭土掺量为5%的混凝土试件在腐蚀36 h后,钢筋锈蚀率较普通混凝土试件降低约52%;腐蚀48 h后,纳米高岭土掺量为3%的混凝土试件与钢筋间的黏结强度约为普通混凝土试件的2.16倍.  相似文献   

10.
采用超声波分散方式将纳米CaCO_3掺入水泥基材料,研究了不同掺量纳米CaCO_3对水泥基材料性能与结构的影响,并利用X射线衍射和扫描电镜分析其影响机理.结果表明:掺入纳米CaCO_3后,水泥基材料流动度降低,浆体表观密度增大,抗折和抗压强度提高.纳米CaCO_3掺量为1.5%(质量分数)时,对水泥基材料的力学性能提高最为显著,纳米CaCO_3掺量过多则不利于强度发展.纳米CaCO_3的掺入会加速水泥的水化,早期使水化产物Ca(OH)_2等增加;纳米CaCO_3改善了界面结构和水泥石结构,使水泥基材料的结构变得更加均匀密实.结果显示纳米CaCO_3掺入后对水泥基材料的力学性能与结构有利.  相似文献   

11.
为研究混凝土的绿色化和高性能化,进行了不同纳米SiO_2掺量下超细粉煤灰混凝土的静态压拉试验,分析了纳米SiO_2掺量对超细粉煤灰混凝土压拉强度的影响和最优掺量下对超细粉煤灰混凝土的破坏形态影响。试验结果表明:普通混凝土和超细粉煤灰混凝土试件的抗压和劈裂抗拉强度均随纳米SiO_2加入量的增大显示先上升后下降的趋势,当纳米SiO_2加入量为0.8%时,普通混凝土试件的抗压和劈裂抗拉强度增幅效果最好;当纳米SiO_2加入量为1.0%时,超细粉煤灰混凝土试件的抗压和劈裂抗拉强度增幅效果最好;试件的抗压和劈裂抗拉破坏形态均为脆性破坏,但超细粉煤灰混凝土掺入1.0%纳米SiO_2后抗压和劈裂抗拉破坏程度明显得到改善。  相似文献   

12.
试验制作了一系列具有不同体积钢纤维掺量下的再生骨料混凝土试件,利用74 mm变截面分离式的霍普金森压杆(SHPB)进行了动态冲击压缩试验,研究了不同钢纤维掺量和气压值下再生骨料混凝土材料的破坏形态与模式,分析了材料的动态应变速率敏感性.结果表明,钢纤维再生混凝土的破坏形式与钢纤维体积掺量和应变速率有较高的相关性,对进一步进行深入研究具有指导意义.  相似文献   

13.
为了解不同纳米CaCO_3粉末掺量对水泥砂浆力学性能和微观结构形貌的影响和发展规律,试验取纳米CaCO_3的掺量分别为0,0.4%,1.2%,1.8%,2.2%,3.0%,对不同掺量下砂浆的力学性能和微观结构进行比较分析。结果表明:纳米CaCO_3可明显提高砂浆的抗折强度和抗压强度,掺量为2.2%时,3,7,28 d龄期的砂浆抗折强度比基准提高了17.1%,18.4%,43.6%,抗压强度比基准提高了32.3%,26.8%,28.9%;同时该掺量下7 d的水泥砂浆,其微观结构的水化硅酸钙凝胶最多,孔隙率和裂隙最低,Ca(OH)_2的取向程度最低,结构最为致密。  相似文献   

14.
目的研究亲油纳米SiO_2粉、亲水纳米SiO_2粉、纳米SiO_2溶胶对新拌砂浆力学强度的影响,确定不同性状纳米SiO_2提高水泥强度的最适宜掺量.方法测试不同性状纳米SiO_2在不同掺量、不同龄期下水泥砂浆的抗压与抗折强度;利用X-射线衍射(XRD)与扫描电子显微镜(SEM)分析不同试验条件下水泥的水化产物.结果纳米SiO_2均可提高水泥的早期和后期强度,但对水泥的增强效果不同,纳米SiO_2溶胶对早期强度具有较好的增强作用,亲水纳米SiO_2粉对后期强度的贡献较为明显.纳米SiO_2粉最佳掺量均为1%,溶胶最佳掺量为1.5%.结论掺加不同性状纳米SiO_2均能够改善水泥的力学强度.引入不同性状的纳米SiO_2后,水泥水化3 d的水化产物中Ca(OH)_2含量减少,C-S-H和钙矾石的含量增加,钙矾石结晶程度较好,砂浆体系结构更加密实.  相似文献   

15.
橡胶砂浆的强度会随着橡胶掺量的增大而降低,限制了其工程应用。为增大橡胶掺量,补偿橡胶掺量过大带来的强度损失,以纳米SiO_2作为橡胶砂浆强度提升的外加剂,以橡胶替代率为40%和60%等体积替代砂子,共设计了6种配合比。研究了一定量的纳米SiO_2对两种大掺量的橡胶砂浆强度的提升以及收缩性、密度及孔隙的影响。结果表明:纳米SiO_2对大掺量砂浆抗压、抗折强度均有显著的提升;且提升效果优于普通砂浆。掺入纳米SiO_2可增强橡胶砂浆的刚度;并且使其韧性仍优于普通砂浆。掺入纳米SiO_2能够减少大掺量橡胶砂浆的孔隙率和吸水率。并且使橡胶砂浆的密度增加;橡胶掺量对砂浆的收缩量影响不明显;而加入纳米SiO_2会使橡胶砂浆的收缩量增大。掺入纳米SiO_2能够减少橡胶砂浆的质量损失;并且橡胶掺量越大作用越明显。  相似文献   

16.
再生混凝土力学性能较差,无法广泛应用,在预先浸泡再生骨料的基础上,将辅助胶凝材料纳米硅溶胶(1%,3%, 5%)与粉煤灰(10%, 15%, 20%)复合掺入再生混凝土中制备了改性再生混凝土。通过抗压强度、劈裂抗拉强度、坍落度试验探究了辅助胶凝材料对再生混凝土综合使用性能的影响;并在微观层次上揭示了辅助胶凝材料对再生混凝土性能影响的作用机理。结果表明,两种材料复合掺入后的协同作用使再生混凝土的力学性能、工作性能得到了全面提升,经试验测得纳米硅溶胶与粉煤灰的最佳复掺量分别为3%, 15%,其90 d抗压强度和劈裂抗拉强度最多提升50.5%, 73.6%,坍落度保持在165 mm左右。微观表征显示复掺两种材料加快了水泥水化反应,降低了水泥浆体的钙硅比,并由此增加了C-S-H凝胶含量;絮凝状C-S-H凝胶紧密包裹着水化产物,填充了混凝土内部的孔隙和裂缝,优化了界面过渡区结构,再生混凝土的强度得到显著提升。  相似文献   

17.
在172 d的贮存期内,对经表面活性剂改性的纳米碳酸钙的粒径变化进行了考察,并对其在硬质PVC中的应用性能进行了测试.结果显示,经合适的表面活性剂改性的纳米碳酸钙具有较好的贮存稳定性.经表面活性剂改性的纳米碳酸钙应用于硬质PVC之后,测试其力学性能,结果显示,添加纳米碳酸钙的PVC,其力学性能优于添加普通活性轻钙的.添加量相同时,添加纳米碳酸钙的PVC的拉伸强度比添加普通活性轻钙的高10%~15%;CaCO3质量分数<30%时,断裂伸长率提高一倍以上;冲击强度最大可提高2倍以上.如以同样的力学性能为指标,则纳米碳酸钙在硬质PVC中的添加量可显著地提高.  相似文献   

18.
橡胶砂浆的强度会随着橡胶掺量的增大而降低,限制了其工程应用。为增大橡胶掺量,补偿橡胶掺量过大带来的强度损失,以纳米SiO_2作为橡胶砂浆强度提升的外加剂,以橡胶替代率为40%和60%等体积替代砂子,共设计了6种配合比。研究了一定量的纳米SiO_2对两种大掺量的橡胶砂浆强度的提升以及收缩性、密度及孔隙的影响。结果表明:纳米SiO_2对大掺量砂浆抗压、抗折强度均有显著的提升;且提升效果优于普通砂浆。掺入纳米SiO_2可增强橡胶砂浆的刚度;并且使其韧性仍优于普通砂浆。掺入纳米SiO_2能够减少大掺量橡胶砂浆的孔隙率和吸水率。并且使橡胶砂浆的密度增加;橡胶掺量对砂浆的收缩量影响不明显;而加入纳米SiO_2会使橡胶砂浆的收缩量增大。掺入纳米SiO_2能够减少橡胶砂浆的质量损失;并且橡胶掺量越大作用越明显。  相似文献   

19.
在广阔的冻土区,水泥土抗冻性差是限制水泥土应用的一个关键性问题;在这些地区,如何提高水泥土的抗冻性是实际工程中面临的一个重大课题。通过对不同纳米CaCO_3掺量的水泥土进行冻融循环试验和无侧限抗压试验,探讨了纳米水泥土的抗压强度变化规律。试验表明:随着纳米CaCO_3的掺量的增加水泥土的抗压强度表现出先提高后降低;且对提高水泥土强度有一个最优掺量。通过冻融循环试验得到水泥土的无侧限抗压强度随着冻融循环次数的增加而逐渐降低,两者之间几乎成线性关系。在冻融循环次数相同的情况下,随着纳米CaCO_3掺量的增加,水泥土的抗压强度损失率先减小后增大;同样对降低水泥土的强度损失率也存在一个最优掺量。综合考虑水泥土试验和在实际工程中的应用,建议纳米CaCO_3掺量范围10‰~20‰。  相似文献   

20.
在基准透水混凝土配合比的基础上,研究复掺纳米SiO_2和粉煤灰对透水混凝土性能的影响。通过抗压、抗折、渗透系数、孔隙率等实验对比两种掺和料对透水混凝土力学性能和渗透系数的影响。结果表明:单掺纳米SiO_2对透水混凝土的抗压和抗折强度均有提升,对渗透系数和孔隙率没有影响;单掺粉煤灰对透水混凝土的抗压和抗折强度呈现先增大后减小的趋势,渗透系数和孔隙率小幅度的下降;双掺纳米SiO_2与粉煤灰对透水混凝土性能起叠加效应。在不影响渗透系数前提下,当纳米SiO_2掺量为5%,粉煤灰掺量为20%时,透水混凝土抗压强度最高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号