首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
2.
Composition and conservation of the telomeric complex   总被引:6,自引:0,他引:6  
The telomere is composed of telomeric DNA and telomere-associated proteins. Recently, many telomere-associated proteins have been identified, and various telomere functions have been uncovered. In budding yeast, scRap1 binds directly to telomeric DNA, and other telomere regulators (Sir proteins and Rif proteins) are recruited to the telomeres by interacting with scRap1. Cdc13 binds to the most distal end of the chromosome and recruits telomerase to the telomeres. In fission yeast and humans, TTAGGG repeat binding factor (TRF) family proteins bind directly to telomeric DNA, and Rap1 proteins and other telomere regulators are recruited to the telomeres by interacting with the TRF family proteins. Both organisms have Pot1 proteins at the most distal end of the telomere instead of a budding-yeast Cdc13-like protein. Therefore, fission yeast and humans have in part common telomeric compositions that differ from that of budding yeast, a result that suggests budding yeast has lost some telomere components during the course of evolution.  相似文献   

3.
4.
Telomeres and telomerase as targets for cancer therapy   总被引:3,自引:0,他引:3  
Telomeres are protective structures located at the ends of all eukaryotic chromosomes. Telomere shortening upon cell division restricts the proliferative capacity of most normal human cells due to the lack of telomerase, an enzyme synthesizing telomeric DNA de novo. Since most tumor cells are reliant on the activity of telomerase to maintain the stability of predominantly short individual telomeres, inhibition of this enzyme presents an attractive approach for a mechanism-based anticancer therapy. Here, we review advances and obstacles in targeting telomerase and telomeres and discuss potential applications of such approaches for the clinic. Received 9 November 2006; received after revision 8 December 2006; accepted 17 January 2007  相似文献   

5.
6.
Telomeres were first recognized as a bona fide constituent of the chromosome based on their inability to rejoin with broken chromosome ends produced by radiation. Today, we recognize two essential and interrelated properties of telomeres. They circumvent the so-called end-replication problem faced by genomes composed of linear chromosomes, which erode from their termini with each successive cell division. Equally vital is the end-capping function that telomeres provide, which is necessary to deter chromosome ends from illicit recombination. This latter property is critical in facilitating the distinction between the naturally occurring DNA double-strand breaks (DSBs) found at chromosome ends (i.e., telomeres) and DSBs produced by exogenous agents. Here we discuss, in a brief historical narrative, key discoveries that led investigators to appreciate the unique properties of telomeres in protecting chromosome ends, and the consequences of telomere dysfunction, particularly as related to recombination involving radiation-induced DSBs. Dedication. In appreciation of his heart-felt commitment to research and education, and the life-long influence he has had on the lives of students and colleagues, the authors wish to dedicate this paper to Professor Joel S. Bedford. Received 21 May 2007; received after revision 28 June 2007; accepted 6 August 2007  相似文献   

7.
Beyond their role in replication and chromosome end capping, telomeres are also thought to function in meiotic chromosome pairing, meiotic and mitotic chromosome segregation as well as in nuclear organization. Observations in both somatic and meiotic cells suggest that the positioning of telomeres within the nucleus is highly specific and believed to be dependent mainly on telomere interactions with the nuclear envelope either directly or through chromatin interacting proteins. Although little is known about the mechanism of telomere clustering, some studies show that it is an active process. Recent data have suggested a regulatory role for telomere chromatin structure in telomere movement. This review will summarize recent studies on telomere interactions with the nuclear matrix, telomere chromatin structure and factors that modify telomere chromatin structure as related to regulation of telomere movement.  相似文献   

8.
Protecting the terminus: t-loops and telomere end-binding proteins   总被引:11,自引:0,他引:11  
Telomeric DNA is composed of a region of duplex telomeric tract followed by a single-strand overhang on the 3 G-rich strand. The DNA is packaged by proteins that associate directly with the single- and double-strand regions of the telomeric tract and by their associated proteins. This review discusses the evidence that G-strand overhangs are present on both ends of eukaryotic chromosomes and the steps needed to generate these overhangs. The overhangs are protected by specialized G-overhang-binding protein and/or invasion by the overhang of the duplex region of the telomeric tract to form a structure called a t-loop. The G-overhang-binding proteins identified from different species are described, and their properties compared. The data supporting the existence of t-loops at native telomeres is discussed, and the conditions required to promote their in vitro formation are presented.  相似文献   

9.
Summary Allium sativum (garlic) root-tip chromosomes were subjected to a C-banding procedure. In addition to the nucleolar bands reported previously in this species, bands which are telomeric or close to the telomeres have been detected in some pairs. This has allowed us to analyze the arrangement of chromosomes during interphase.  相似文献   

10.
Telomeres and chromosomal instability   总被引:2,自引:0,他引:2  
Telomeres are distinctive structures, composed of a repetitive DNA sequence and associated proteins, which enable cells to distinguish chromosome ends from DNA double-strand breaks. Telomere alterations, caused by replication-mediated shortening, direct damage or defective telomere-associated proteins, usually generate chromosomal instability, which is observed in senescence and during the immortalization process. In cancer cells, this chromosome instability could be extended by their ability to repair chromosomes and terminate in break-fusion-bridge cycles. Dysfunctional telomeres can be healed by activation of telomerase or by the alternative mechanism of telomere lengthening. Activation of such telomere maintenance mechanisms may help to preserve the integrity of chromosomes even if they play a role in chromosomal instability. This review focuses on molecular processes involved in telomere maintenance and chromosomal instability associated with dysfunctional telomeres in mammalian cells.Received 24 July 2003; received after revision 5 September 2003; accepted 11 September 2003  相似文献   

11.
Chromosome 17 abnormalities are often observed in medulloblastomas (MBs), particularly those classified in the consensus Groups 3 and 4. Herein we review MB signature genes associated with chromosome 17 and the relationship of these signature genes to the ubiquitin-proteasome system. While clinical investigators have not focused on the ubiquitin-proteasome system in relation to MB, a substantial amount of data on the topic has been hidden in the form of supplemental datasets of gene expression. A supplemental dataset associated with the Thompson classification of MBs shows that a subgroup of MB with 17p deletions is characterized by reduced expression of genes for several core particle subunits of the beta ring of the proteasome (β1, β4, β5, β7). One of these genes (PSMB6, the gene for the β1 subunit) is located on chromosome 17, near the telomeric end of 17p. By comparison, in the WNT group of MBs only one core proteasome subunit, β6, associated with loss of a gene (PSMB1) on chromosome 6, was down-regulated in this dataset. The MB subgroups with the worst prognosis have a significant association with chromosome 17 abnormalities and irregularities of APC/C cyclosome genes. We conclude that the expression of proteasome subunit genes and genes for ubiquitin ligases can contribute to prognostic classification of MBs. The therapeutic value of targeting proteasome subunits and ubiquitin ligases in the various subgroups of MB remains to be determined separately for each classification of MB.  相似文献   

12.
The aim of this review is threefold. First, we want to report on recent observations on the role of telomeres in the alignment of homolog and non-homologues in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe and the relationship of early telomere clustering to later recombination events. Second, we compare the similarities and differences between synaptic and asynaptic yeasts. Third, we report on the increasing evidence of the effect of meiosis on telomeric sequences that suggest an induction of a specific form of recombination processes termed telomere rapid deletion.  相似文献   

13.
Repetitive DNA motifs are abundant in the genomes of various species and have the capacity to adopt non-canonical (i.e., non-B) DNA structures. Several non-B DNA structures, including cruciforms, slipped structures, triplexes, G-quadruplexes, and Z-DNA, have been shown to cause mutations, such as deletions, expansions, and translocations in both prokaryotes and eukaryotes. Their distributions in genomes are not random and often co-localize with sites of chromosomal breakage associated with genetic diseases. Current genome-wide sequence analyses suggest that the genomic instabilities induced by non-B DNA structure-forming sequences not only result in predisposition to disease, but also contribute to rapid evolutionary changes, particularly in genes associated with development and regulatory functions. In this review, we describe the occurrence of non-B DNA-forming sequences in various species, the classes of genes enriched in non-B DNA-forming sequences, and recent mechanistic studies on DNA structure-induced genomic instability to highlight their importance in genomes.  相似文献   

14.
Summary Orientation of Giemsa C-bands in Allium cepa was studied in both mitotic and interphase cells. It has been shown that telophase orientation of the chromosome is maintained throughout the interphase and early prophase. It has been assumed that this non-random orientation is due to anchorage of the telomeres with the nuclear membrane. Contrary to earlier observations, 2 by 2 pairing of the telomeres could not be traced in this species.  相似文献   

15.
Meiotic dysfunction increasingly afflicts women as they age, resulting in infertility, miscarriage and handicapped offspring. How aging disrupts meiotic function in women remains unclear, but as women increasingly delay childbearing, this issue becomes urgent. Telomeres, which mediate aging in mitotic cells, may also mediate aging during meiosis. Telomeres shorten during DNA replication. In mammals, oocytes remain quiescent, but their precursors replicated during fetal oogenesis. Moreover, eggs ovulated from older women entered meiosis later during fetal oogenesis than eggs ovulated when younger, and therefore underwent more replications. Telomeres also shorten from reactive oxygen, which triggers a DNA repair response, so the prolonged interval between fetal oogenesis and ovulation in some women would further shorten telomeres. Mice normally do not exhibit age-related meiotic dysfunction (interestingly, their telomeres are manyfold longer than telomeres in women), but genetic or pharmacologic shortening of mouse telomeres recapitulates the reproductive aging phenotype of women. This has led to a telomere theory of age-related meiotic dysfunction in women, and underlined the importance to human health of a mechanistic understanding of telomeres and meiosis.  相似文献   

16.
During meiosis, telomeres cluster and promote homologous chromosome pairing. Telomere clustering depends on conserved SUN and KASH domain nuclear membrane proteins, which form a complex called the linker of nucleoskeleton and cytoskeleton (LINC) and connect telomeres with the cytoskeleton. It has been thought that LINC-mediated cytoskeletal forces induce telomere clustering. However, how cytoskeletal forces induce telomere clustering is not fully understood. Recent study of fission yeast has shown that the LINC complex forms the microtubule-organizing center (MTOC) at the telomere, which has been designated as the “telocentrosome”, and that microtubule motors gather telomeres via telocentrosome-nucleated microtubules. This MTOC-dependent telomere clustering might be conserved in other eukaryotes. Furthermore, the MTOC-dependent clustering mechanism appears to function in various other biological events. This review presents an overview of the current understanding of the mechanism of meiotic telomere clustering and discusses the universality of the MTOC-dependent clustering mechanism.  相似文献   

17.
Polyubiquitin chains: functions, structures, and mechanisms   总被引:2,自引:1,他引:1  
Ubiquitin is a highly conserved 76-amino acid polypeptide that is found throughout the eukaryotic kingdom. The covalent conjugation of ubiquitin (often in the form of a polymer) to substrates governs a variety of biological processes ranging from proteolysis to DNA damage tolerance. The functional flexibility of this post-translational modification has its roots in the existence of a large number of ubiquitinating enzymes that catalyze the formation of distinct ubiquitin polymers, which in turn encode different signals. This review summarizes recent advances in the field with an emphasis on the non-canonical functions of polyubiquitination. We also discuss the potential mechanism of chain linkage specification as well as how structural disparity in ubiquitin polymers may be distinguished by ubiquitin receptors to translate the versatile ubiquitin signals into various cellular functions.  相似文献   

18.
The study of homologous recombination in the fission yeastSchizosaccharomyces pombe has recently been extended to the cytological analysis of meiotic prophase. Unlike in most eukaryotes no tripartite SC structure is detectable, but linear elements resembling axial cores of other eukaryotes are retained. They may be indispensable for meiotic recombination and proper chromosome segregation in meiosis I. In addition fission yeast shows interesting features of chromosome organization in vegetative and meiotic cells: Centromeres and telomeres cluster and associate with the spindle pole body. The special properties of fission yeast meiosis correlate with the absence of crossover interference in meiotic recombination. These findings are discussed. In addition homologous recombination in fission yeast is reviewed briefly.This article is dedicated to Urs Leupold, the founder of fission yeast genetics.  相似文献   

19.
Studying the effect of ionic strength on DNA protection by histone F1 against DNase I has shown a maximum protection near 0,1 M NaCl. At this ionic strength, different results have been obtained by measuring the initial velocity or the amount of DNA hydrolysed at the end of the reaction.  相似文献   

20.
S C Roy  S Ghosh 《Experientia》1977,33(4):432-433
Orientation of Giemsa C-bands in Allium cepa was studied in both mitotic and interphase cells. It has been shown that telophase orientation of the chromosome is maintained throughout the interphase and early phophase. It has been assumed that this non-random orientation is due to anchorage of the telomeres with the nuclear membrane. Contrary to earlier observations, 2 by 2 pairing of the telomers could not be traced to this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号