首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Mutations in the gene encoding c-Abl-binding protein SH3BP2 cause cherubism   总被引:16,自引:0,他引:16  
Cherubism (MIM 118400) is an autosomal dominant inherited syndrome characterized by excessive bone degradation of the upper and lower jaws followed by development of fibrous tissue masses, which causes a characteristic facial swelling. Here we describe seven mutations in the SH3-binding protein SH3BP2 (MIM 602104) on chromosome 4p16.3 that cause cherubism.  相似文献   

3.
Emery-Dreifuss muscular dystrophy (EDMD) is characterized by early contractures of elbows and Achilles tendons, slowly progressive muscle wasting and weakness, and a cardiomyopathy with conduction blocks which is life-threatening. Two modes of inheritance exist, X-linked (OMIM 310300) and autosomal dominant (EDMD-AD; OMIM 181350). EDMD-AD is clinically identical to the X-linked forms of the disease. Mutations in EMD, the gene encoding emerin, are responsible for the X-linked form. We have mapped the locus for EDMD-AD to an 8-cM interval on chromosome 1q11-q23 in a large French pedigree, and found that the EMD phenotype in four other small families was potentially linked to this locus. This region contains the lamin A/C gene (LMNA), a candidate gene encoding two proteins of the nuclear lamina, lamins A and C, produced by alternative splicing. We identified four mutations in LMNA that co-segregate with the disease phenotype in the five families: one nonsense mutation and three missense mutations. These results are the first identification of mutations in a component of the nuclear lamina as a cause of inherited muscle disorder. Together with mutations in EMD (refs 5,6), they underscore the potential importance of the nuclear envelope components in the pathogenesis of neuromuscular disorders.  相似文献   

4.
5.
The dystonias are a common clinically and genetically heterogeneous group of movement disorders. More than ten loci for inherited forms of dystonia have been mapped, but only three mutated genes have been identified so far. These are DYT1, encoding torsin A and mutant in the early-onset generalized form, GCH1 (formerly known as DYT5), encoding GTP-cyclohydrolase I and mutant in dominant dopa-responsive dystonia, and TH, encoding tyrosine hydroxylase and mutant in the recessive form of the disease. Myoclonus-dystonia syndrome (MDS; DYT11) is an autosomal dominant disorder characterized by bilateral, alcohol-sensitive myoclonic jerks involving mainly the arms and axial muscles. Dystonia, usually torticollis and/or writer's cramp, occurs in most but not all affected patients and may occasionally be the only symptom of the disease. In addition, patients often show prominent psychiatric abnormalities, including panic attacks and obsessive-compulsive behavior. In most MDS families, the disease is linked to a locus on chromosome 7q21 (refs. 11-13). Using a positional cloning approach, we have identified five different heterozygous loss-of-function mutations in the gene for epsilon-sarcoglycan (SGCE), which we mapped to a refined critical region of about 3.2 Mb. SGCE is expressed in all brain regions examined. Pedigree analysis shows a marked difference in penetrance depending on the parental origin of the disease allele. This is indicative of a maternal imprinting mechanism, which has been demonstrated in the mouse epsilon-sarcoglycan gene.  相似文献   

6.
Camurati-Engelmann disease (CED; MIM 131300), or progressive diaphyseal dysplasia, is a rare, sclerosing bone dysplasia inherited in an autosomal dominant manner. Recently, the gene causing CED has been assigned to the chromosomal region 19q13 (refs 1-3). Because this region contains the gene encoding transforming growth factor-beta 1 (TGFB1), an important mediator of bone remodelling, we evaluated TGFB1 as a candidate gene for causing CED.  相似文献   

7.
We found mutations in the gene PQBP1 in 5 of 29 families with nonsyndromic (MRX) and syndromic (MRXS) forms of X-linked mental retardation (XLMR). Clinical features in affected males include mental retardation, microcephaly, short stature, spastic paraplegia and midline defects. PQBP1 has previously been implicated in the pathogenesis of polyglutamine expansion diseases. Our findings link this gene to XLMR and shed more light on the pathogenesis of this common disorder.  相似文献   

8.
Autosomal recessive limb-girdle muscular dystrophies (AR LGMDs) are a genetically heterogeneous group of disorders that affect mainly the proximal musculature. There are eight genetically distinct forms of AR LGMD, LGMD 2A-H (refs 2-10), and the genetic lesions underlying these forms, except for LGMD 2G and 2H, have been identified. LGMD 2A and LGMD 2B are caused by mutations in the genes encoding calpain 3 (ref. 11) and dysferlin, respectively, and are usually associated with a mild phenotype. Mutations in the genes encoding gamma-(ref. 14), alpha-(ref. 5), beta-(refs 6,7) and delta (ref. 15)-sarcoglycans are responsible for LGMD 2C to 2F, respectively. Sarcoglycans, together with sarcospan, dystroglycans, syntrophins and dystrobrevin, constitute the dystrophin-glycoprotein complex (DGC). Patients with LGMD 2C-F predominantly have a severe clinical course. The LGMD 2G locus maps to a 3-cM interval in 17q11-12 in two Brazilian families with a relatively mild form of AR LGMD (ref. 9). To positionally clone the LGMD 2G gene, we constructed a physical map of the 17q11-12 region and refined its localization to an interval of 1.2 Mb. The gene encoding telethonin, a sarcomeric protein, lies within this candidate region. We have found that mutations in the telethonin gene cause LGMD 2G, identifying a new molecular mechanism for AR LGMD.  相似文献   

9.
Mutations in IHH, encoding Indian hedgehog, cause brachydactyly type A-1.   总被引:20,自引:0,他引:20  
B Gao  J Guo  C She  A Shu  M Yang  Z Tan  X Yang  S Guo  G Feng  L He 《Nature genetics》2001,28(4):386-388
Brachydactyly type A-1 (BDA-1; MIM 112500) is characterized by shortening or missing of the middle phalanges (Fig. 1a). It was first identified by Farabee in 1903 (ref. 2), is the first recorded example of a human anomaly with Mendelian autosomal-dominant inheritance and, as such, is cited in most genetic and biological textbooks. Here we show that mutations in IHH, which encodes Indian hedgehog, cause BDA-1. We have identified three heterozygous missense mutations in the region encoding the amino-terminal signaling domain in all affected members of three large, unrelated families. The three mutant amino acids, which are conserved across all vertebrates and invertebrates studied so far, are predicted to be adjacent on the surface of IHH.  相似文献   

10.
The autosomal dominant retinitis pigmentosa (RP) locus, designated RP1, has been mapped through linkage studies to a 4-cM interval at 8q11-13. Here we describe a new photoreceptor-specific gene that maps in this interval and whose expression is modulated by retinal oxygen levels in vivo. This gene consists of at least 4 exons that encode a predicted protein of 2,156 amino acids. A nonsense mutation at codon 677 of this gene is present in approximately 3% of cases of dominant RP in North America. We also detected two deletion mutations that cause frameshifts and introduce premature termination codons in three other families with dominant RP. Our data suggest that mutations in this gene cause dominant RP, and that the encoded protein has an important but unknown role in photoreceptor biology.  相似文献   

11.
Protein-protein interaction analyses have uncovered a ciliary and basal body protein network that, when disrupted, can result in nephronophthisis (NPHP), Leber congenital amaurosis, Senior-L?ken syndrome (SLSN) or Joubert syndrome (JBTS). However, details of the molecular mechanisms underlying these disorders remain poorly understood. RPGRIP1-like protein (RPGRIP1L) is a homolog of RPGRIP1 (RPGR-interacting protein 1), a ciliary protein defective in Leber congenital amaurosis. We show that RPGRIP1L interacts with nephrocystin-4 and that mutations in the gene encoding nephrocystin-4 (NPHP4) that are known to cause SLSN disrupt this interaction. RPGRIP1L is ubiquitously expressed, and its protein product localizes to basal bodies. Therefore, we analyzed RPGRIP1L as a candidate gene for JBTS and identified loss-of-function mutations in three families with typical JBTS, including the characteristic mid-hindbrain malformation. This work identifies RPGRIP1L as a gene responsible for JBTS and establishes a central role for cilia and basal bodies in the pathophysiology of this disorder.  相似文献   

12.
Mutations in a gene encoding an ABC transporter cause pseudoxanthoma elasticum   总被引:15,自引:0,他引:15  
Pseudoxanthoma elasticum (PXE) is a heritable disorder characterized by calcification of elastic fibres in skin, arteries and retina that results in dermal lesions with associated laxity and loss of elasticity, arterial insufficiency and retinal haemorrhages leading to macular degeneration. PXE is usually found as a sporadic disorder, but examples of both autosomal recessive and autosomal dominant forms of PXE have been observed. Partial manifestations of the PXE phenotype have also been described in presumed carriers in PXE families. Linkage of both dominant and recessive forms of PXE to a 5-cM domain on chromosome 16p13.1 has been reported (refs 8,9). We have refined this locus to an 820-kb region containing 6 candidate genes. Here we report the exclusion of five of these genes and the identification of the first mutations responsible for the development of PXE in a gene encoding a protein associated with multidrug resistance (ABCC6).  相似文献   

13.
Carney complex (CNC) is a multiple neoplasia syndrome characterized by spotty skin pigmentation, cardiac and other myxomas, endocrine tumours and psammomatous melanotic schwannomas. CNC is inherited as an autosomal dominant trait and the genes responsible have been mapped to 2p16 and 17q22-24 (refs 6, 7). Because of its similarities to the McCune-Albright syndrome and other features, such as paradoxical responses to endocrine signals, genes implicated in cyclic nucleotide-dependent signalling have been considered candidates for causing CNC (ref. 10). In CNC families mapping to 17q, we detected loss of heterozygosity (LOH) in the vicinity of the gene (PRKAR1A) encoding protein kinase A regulatory subunit 1-alpha (RIalpha), including a polymorphic site within its 5' region. We subsequently identified three unrelated kindreds with an identical mutation in the coding region of PRKAR1A. Analysis of additional cases revealed the same mutation in a sporadic case of CNC, and different mutations in three other families, including one with isolated inherited cardiac myxomas. Analysis of PKA activity in CNC tumours demonstrated a decreased basal activity, but an increase in cAMP-stimulated activity compared with non-CNC tumours. We conclude that germline mutations in PRKAR1A, an apparent tumour-suppressor gene, are responsible for the CNC phenotype in a subset of patients with this disease.  相似文献   

14.
Sensory motor neuropathy is associated with various inherited disorders including Charcot-Marie-Tooth disease, X-linked adrenoleukodystrophy/adrenomyeloneuropathy and Refsum disease. In the latter two, the neuropathy is thought to result from the accumulation of specific fatty acids. We describe here three patients with elevated plasma concentrations of pristanic acid (a branched-chain fatty acid) and C27-bile-acid intermediates. Two of the patients suffered from adult-onset sensory motor neuropathy. One patient also had pigmentary retinopathy, suggesting Refsum disease, whereas the other patient had upper motor neuron signs in the legs, suggesting adrenomyeloneuropathy. The third patient was a child without neuropathy. In all three patients we discovered a deficiency of alpha-methylacyl-CoA racemase (AMACR). This enzyme is responsible for the conversion of pristanoyl-CoA and C27-bile acyl-CoAs to their (S)-stereoisomers, which are the only stereoisomers that can be degraded via peroxisomal beta-oxidation. Sequence analysis of AMACR cDNA from the patients identified two different mutations that are likely to cause disease, based on analysis in Escherichia coli. Our findings have implications for the diagnosis of adult-onset neuropathies of unknown aetiology.  相似文献   

15.
Chronic pancreatitis (CP) is a continuing or relapsing inflammatory disease of the pancreas. In approximately one-third of all cases, no aetiological factor can be found, and these patients are classified as having idiopathic disease. Pathophysiologically, autodigestion and inflammation may be caused by either increased proteolytic activity or decreased protease inhibition. Several studies have demonstrated mutations in the cationic trypsinogen gene (PRSS1) in patients with hereditary or idiopathic CP. It is thought that these mutations result in increased trypsin activity within the pancreatic parenchyma. Most patients with idiopathic or hereditary CP, however, do not have mutations in PRSS1 (ref. 4). Here we analysed 96 unrelated children and adolescents with CP for mutations in the gene encoding the serine protease inhibitor, Kazal type 1 (SPINK1), a pancreatic trypsin inhibitor. We found mutations in 23% of the patients. In 18 patients, 6 of whom were homozygous, we detected a missense mutation of codon 34 (N34S). We also found four other sequence variants. Our results indicate that mutations in SPINK1 are associated with chronic pancreatitis.  相似文献   

16.
Noonan syndrome (MIM 163950) is an autosomal dominant disorder characterized by dysmorphic facial features, proportionate short stature and heart disease (most commonly pulmonic stenosis and hypertrophic cardiomyopathy). Webbed neck, chest deformity, cryptorchidism, mental retardation and bleeding diatheses also are frequently associated with this disease. This syndrome is relatively common, with an estimated incidence of 1 in 1,000-2,500 live births. It has been mapped to a 5-cM region (NS1) [corrected] on chromosome 12q24.1, and genetic heterogeneity has also been documented. Here we show that missense mutations in PTPN11 (MIM 176876)-a gene encoding the nonreceptor protein tyrosine phosphatase SHP-2, which contains two Src homology 2 (SH2) domains-cause Noonan syndrome and account for more than 50% of the cases that we examined. All PTPN11 missense mutations cluster in interacting portions of the amino N-SH2 domain and the phosphotyrosine phosphatase domains, which are involved in switching the protein between its inactive and active conformations. An energetics-based structural analysis of two N-SH2 mutants indicates that in these mutants there may be a significant shift of the equilibrium favoring the active conformation. This implies that they are gain-of-function changes and that the pathogenesis of Noonan syndrome arises from excessive SHP-2 activity.  相似文献   

17.
Mutations in ATP2C1, encoding a calcium pump, cause Hailey-Hailey disease   总被引:29,自引:0,他引:29  
Hailey-Hailey disease (HHD, MIM 16960) is inherited in an autosomal dominant manner and characterized by persistent blisters and erosions of the skin. Impaired intercellular adhesion and epidermal blistering also occur in individuals with pemphigus (which is due to autoantibodies directed against desmosomal proteins) and in patients with Darier disease (DD, MIM 124200), which is caused by mutations in a gene encoding a sarco/endoplasmic reticulum (ER)-Golgi calcium pump. We report here the identification of mutations in ATP2C1, encoding the human homologue of an ATP-powered pump that sequesters calcium into the Golgi in yeast, in 21 HHD kindreds. Regulation of cytoplasmic calcium is impaired in cultured keratinocytes from HHD patients, and the normal epidermal calcium gradient is attenuated in vivo in HHD patients. Our findings not only provide an understanding of the molecular basis of HHD, but also underscore the importance of calcium control to the functioning of stratified squamous epithelia.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号