首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sapphirine is a relatively uncommon mineral whichgenerally occurs in granulite with bulk compositions richin both Mg and Al. It was mainly recognized in Al-richrocks of Precambrian granulite terrane[1]. Recently, it wasalso reported from the HP/HT metamorphic rocks in thePhanerozoic collision orogens[2,3]. In China, up to now,sapphirine was only reported in Precambrian Al-richgneisses from the Daqingshan area, Inner Mongolia[4].Sapphirine often forms from the breakdown of earlieraluminou…  相似文献   

2.
Huang  Fang  He  YongSheng 《科学通报(英文版)》2010,55(22):2428-2439
C-type adakites have been commonly considered as a result of partial melting of the mafic lower continental crust (LCC) at high pressure, as supported by high P-T experiments on hydrous basalts. However, because the mafic eclogitic LCC is generally dry, experiments on water-bearing materials cannot be used to constrain the melting processes of the dry mafic LCC. Due to the lack of systematic melting experimental studies on dry mafic rocks at crustal pressures, MELTs software was applied to simulating melting of the dry mafic LCC at 1–2 GPa. Comparison of model results with experimental data indicates that, when melting degree is greater than 20%, melts from the dry mafic LCC at 1–3 GPa cannot produce the C-type adakitic melt with high SiO2 content (~70%). Although the limited experimental results about dry mafic rock melting at 1–2 GPa in the literature suggest that low degree melting (<10%) cannot produce silicic melt either, MELTs software simulation shows that, at pressure >1.8 GPa, low-degree melting can produce dacitic melt with high K2O/Na2O (~1) if SiO2 content of the melt is controlled by residual garnet. Furthermore, the simulation also suggests that, if pressure is <1.8 GPa, abundant plagioclase (plg) in the residual phase may decrease SiO2 content in the melt to below 62%, much lower than that of the C-type adakites observed in eastern China. Given the high P-T conditions required to produce melts with high SiO2 and extremely low HREE contents, such melts could easily be contaminated by other crustal-derived melts, implying that the C-type adakites from eclogite melting could be less commonly observed in the outcrops than previously believed. Besides the interpretation that garnet fractionates Sr, Y, and REE, high Sr/Y and La/Yb could be also produced by multiple ways such as inheriting the source features and fractional crystallizing clinopyroxene (cpx). Therefore, it may be problematic using high Sr/Y and La/Yb as criteria to identify adakites. Instead, REE patterns with strong depletion of HREE relative to MREE (e.g. high Gd/Yb) could be a better parameter to identify the role of garnet and thus adakites. Finally, geochemical models based on MELTs simulation indicate that Eu anomaly cannot be simply used to constrain the role of plg in magmatism because Eu anomaly in the melt is a function of source characteristics, oxygen fugacity (fO2) of magmatic systems, and plg/mafic minerals mode ratio.  相似文献   

3.
Here we present the results of dehydration melting, melt morphology and fluid migration based on the dehydration melting experiments on natural biotite-plagioclase gneiss performed at the pressure of 1.0—1.4 GPa, and at the temperature of 770—1028℃. Experimental results demonstrate that: (ⅰ) most of melt tends to be distributed along mineral boundaries forming “melt film” even the amount of melt is less than 5 vol%; melt connectivity is controlled not only by melt topology but also by melt fraction; (ⅱ) dehydration melting involves a series of subprocesses including subsolidus dehydration reaction, fluid migration, vapor-present melting and vapor-absent melting; (ⅲ) experiments produce peraluminous granitic melt whose composition is similar to that of High Himalayan leucogranites (HHLG) and the residual phase assemblage is Pl+Qz+ Gat+Bio+Opx± Cpx+Ilm/Rut± Kfs and can be comparable with granulites observed in Himalayas. The experiments provide the evidence that biotite-plagioclase gneiss is one of source rocks of HHLG and dehydration melting is an important way to form HHLG and the granulites. Additionally, experimental results provide constraints on determining the P-T conditions of Himalayan crustal anatexis.  相似文献   

4.
The continental lithosphere growth mainly includes the horizontal accretion at the plate boundaries and vertical accretion within the plate[1]. Mafic magmatic materials, as the products of crust-mantle interaction[2,3], became more and more important in studying the formation and evolu- tion of the lower crust. The previous geologic researcheson Tianshan, extending nearly 2500 km from east to west, and the neighbor area were mainly focused on the Paleozoic collision structure[4 ― 6], Mesozoi…  相似文献   

5.
Magnesite-bearing garnet lherzolite from the Altyn Tagh, associated with garnet pyroxenite, and garnet-bearing felsic gneiss, crops out as lenses in Proterozoic gneiss about 100 km east of the Jianggelasayi River. The garnet lherzolite, together with the eclogite in western Jianggelasayi, composes a high-pressure to ultrahigh- pressure metamorphic belt in the southern margin of the Altyn Tagh. Parageneses of minerals from magnesite-bearing garnet lherzolite indicate that the rock evolved a multi-stage metamorphism. The peak-stage metamorphism produces an assemblage of Grt+Ol+Opx+Cpx±Mgs, in which Al2O3 content of Opx is very low (0.30 — 0.66wt%). The calculated P-T condition of the peak stage is 3.8—5.1GPa and 880—970℃, some exsolution rods of clinopyroxene and rutile occur in the Grt and magnesite is rimed by dolomite and orthopyroxene, all implying that the peak stage was a UHP metamorphic process. Together with regional geological studies, isotopic dating and the discovery of coesite inclusions in zircon separates from felsic gneiss from the northern margin of the Qaidam Basin, the presence of a very long UHP metamorphic belt in northwest China is suggested.  相似文献   

6.
The high pressure pelitic granulite with peak assemblage of garnet kyanite ternary feldspar muscovite rutile was discovered in Qixia area in the Precambrian Jiaobei massif, where high pressure basic granulites are widely distributed. The metamorphic peak conditions for the pelitic granulite were calculated as T=800-840℃ and P=1.0-1.25 GPa on the basis of P-T pseudosection. The post peak P-T path is characterized first by an isothermal decompression (ITD) pattern and then by an isobaric cooling (IBC) pattern, indicating a geodynamic process related to thinning of thickened continental crust.  相似文献   

7.
Here we present an insight into the genesis of Himalayan granulitic lower crust based on the experimental studies on the dehydration melting of natural biotite-plagioclase gneiss performed at the temperatures of 770-980℃ and the pressures of 1.0-1.4 GPa. The experiments produce peraluminous granitic melt and residual phase assemblage (Pl+Qz+Gat+Bio+Opx±Cpx+Ilm/Rut±Kfs). The residual mineral assemblage is similar to those of granu-lites observed at the eastern and western Himalayan syntax-ises, and the chemical compositions of characteristic minerals-garnet and pyroxene in the residual phase and the granu-lite are identical. Additionally, the modeled wave velocities of the residual phase assemblage are comparable well with those of the top part of lower crust beneath Himalayas. Hence, we suggest that (1) the top part of lower crust beneath Himalayas is probably made up of garnet-bearing intermediate granulite; (2) the formations of granulite and leucogranites in Himalayas are interrelated as the results of crustal anatexis; and (3) dehydration melting of bio-tite-plagioclase gneiss is an important process to form granulitic lower crust, to reconstitute and adjust the crustal texture. Moreover, experimental results can provide constraints on determining the P-T conditions of Himalayan crustal anatexis.  相似文献   

8.
Two-pyroxene-bearing granulites were discovered for the first time in the Hercynian-Indosinian metamorphic belt of the southern Qinling Mountains. The granulites occur in the lower part of the Fuping complex and are dominated by intermediate-acidic rocks intercalated with a small amount of bands and lenses of basic granulites. The main metamorphic minerals include orthopyroxene, clinopyroxene, biotite, plagioclase and quartz, and orthopyroxenes are often retrogressively transformed into amphiboles. The metamorphic conditions have been estimated to be %T%=720-780℃ and %P%=0.6 GPa. The granulite-bearing Fuping complex probably belongs to early Proterozoic in age. Whether it occurs as the crystalline basement of the southern Qinling Hercynian-Indosinian orogenic belt or as a thrusted slice in the collisional process needs further study.  相似文献   

9.
Based on detailed studies on the compositional zoning of garnet and biotite in pelitic rocks from the Jingshan group of granulite facies in north Jiaodong, P-T pseudosections with isopleths of Fe/(Fe + Mg) in garnet and biotite were calculated in the KF-MASH system for two representative rocks of sillimanite-garnet-cordierite-biotite gneiss ( Vbi/ Vg>1 ) and sillimanite-garnet gneiss (Vbi/ Vg<0.2) using the software THERMOCALC and the internally consistent thermodynamic dataset. With a comparison of the calculated Fe/(Fe+ Mg) values in garnet and biotite in the peak P-T fields constrained by peak mineral assemblages with the measured ones, it is concluded that the coarse garnet crystals with diffusion zoning from high grade meta-pelites can preserve their peak compositions even when they have experienced a cooling event, and that biotite crystals surrounded by fetsic minerals in biotite-rich rocks with Vbi/Vg> 1 can nearly preserve their peak compositions, and biotites in garnet-rich rocks with Vbi/Vg<0. 2 cannot preserve their peak compositions due to the influence of grain-boundary fluid.  相似文献   

10.
The basic granulite of the Altay orogenic belt occurs as tectonic lens in the Devonian medium- to lower-grade metamorphic beds through fault contact. The Altay granulite (AG) is an amphibole plagioclase two-pyroxene granulite and is mainly composed of two pyroxenes, plagioclase, amphibole and biotite. Its melano-minerals are rich in Mg/(Mg Fe^2 ),and its amphibole and biotite are rich in TiO2. The AG is rich in Mg/(Mg Fe^2 ), Al2O3 and depletion of U, Th and Rbcontents. The AG has moderate ∑REE and LREE-enriched with weak positive Eu anomaly. The AG shows island-arc pattern with negative Nb, P and Ti anomalies, reflecting that formation of the AG may be associated with subduction. Geochemical and mineral composition data reflect that the protolith of the AG is calc-alkaline basalt and formed by granulite facies metamorphism having peak P-T conditions of 750℃-780℃ and 0.6-0.7 Gpa. The AG formation underwent two stages was suggested. In the early stage of oceanic crustal subduction, calc-alkaline basalt with island-arc environment underwent granulite facies metamorphism to form the AG in deep crust, and in the late stage, the AG was thrust into the upper crust.  相似文献   

11.
Conclusions The transition from natural Al-enstatite to garnet and Al-poor pyroxene has taken place under the condition of about 1000°C and 4.5–5.5 GPa, and new phases of garnet and corundum have formed when 15% Al2O3 was added to the initial natural Al-enstatite. This experimental result has explained the ultrahigh pressure (3.5–5.0 GPa) and relatively low temperature (< 1000°C) genesis of the ultramafic rock of high-pressure metamorphic zone in Dabieshan-northern Jiangsu-Jiaodong and of red corundum garnetite coexisting with garnet peridotite. From the genetic mineralogy, petrology andP-T equilibrium conditions of garnet peridotite of the high-pressure metamorphic zone, kimberlite and Cenozoic basalt and the ultrahigh pressure experimental result, it is inferred that the upper mantle garnet peridotite is transformed with the increase of depth from Al-rich pyroxene garnet peridotite (80–120 km) to Al-poor pyroxene garnet peridotite (greater than 120–150 km).  相似文献   

12.
Cenozoic basalt-borne mafic granulite-facies plagioclase pyroxenite and eclogite-facies garnet pyroxenite xenoliths from the Hannuoba, as well as nearby Archean terrain granulites, are selected for the experimental study on the P wave velocity at high temperature and high pressure in order to reveal the present-day compositional features for the lower crust and crust-mantle transitional zone. Results show that mafic xenoliths have high Vp (7.0~8.0 km/s), in contrast, the Archean terrain granulites have low Vp (<7.0 km/s). High Vp mafic xenoliths can represent the present-day compositional features for the lower crust and crust-mantle transitional zone beneath the Hannuoba. This provides new evidence for the crust vertical growth and the formation of the crust-mantle transitional zone resulting from the magma underplating. Low Vp Archean granulite still remains the characteristics of the early lower crust.  相似文献   

13.
The HP–UHP metamorphic terrane of Jiangling, eastern Dabieshan comprises extensively distributed granitic gneisses, mica-schists and numerous eclogite blocks. The mica-schists generally contain garnet, phengitic muscovite, biotite, plagioclase, quartz, rutile and a small amount of epidote and hornblende. Study on petrography and phases equilibria in the NCKMnFMASH system indicates that the present mineral assemblages in mica-schists are not in equilibrium. The earlier stage of mineral assemblage represented by garnet and phengite reflects a HP–UHP condition. The garnet compositions and the phengite Si contents give a PT condition of 580–600℃ at 2.6–2.8 GPa. The garnet zonation records an earlier progressive metamorphic process which may be associated with the appearance of glaucophane, jadeite and lawsonite. The later stage of mineral assemblage characterized by the presence of biotite and plagioclase reflects a PT condition of 620–635℃ at 0.9–1.1 GPa, belonging to the HP amphibolite facies. The main mineral assemblage in micaschists from the Jiangling region has recorded a complete HP–UHP metamorphic process.  相似文献   

14.
Lithospheric thinning in East China attracts much attention of geologists. In many cases where a lithospheric thinning is inferred, the trigger for instability is a preced-ing episode of crustal thickening by the continental colli-sion[1]. Lithospheric processes (e.g. lithospheric thinning) could be recorded by the thermal history of the lower crustal and upper mantle xenoliths. Xu et al.[2] suggested that the cooling (from >1200 to 850℃) recorded by spinel harzburgite from Northeast China …  相似文献   

15.
Abundant occurrences of quartz vein within eclogites in the Dabie-Sulu orogen provide us an opportunity to study metamorphic fluid flow during subduction and exhumation of continental crust. It is, however, usually short of petrological constraints on pressure and temperature of vein formation. This study focuses on kyanite-quartz veins within Iow-T/high-P eclogite in the Dabie terrane that contain unique polycrystalline aggregates, interpreted as pseudomorphs after porphyroblasts of lawsonite. Coesite pseudomorphs were found for the first time in garnet from eclogite, resulting in a revised estimate of peak P-T conditions at 670℃ and 3.3 GPa for the eclogite. This indicates a stability field at graphite/diamond transition, thus upgrading the HP unit to a UHP unit. Neither foliation texture, undulose extinction of quartz nor coesite were observed in quartz veins,although the peak P-T conditions were estimated the same as that in host eclogite in light of thermodynamic calculation based on mineral assemblage in kyanite-quartz veins.Therefore, the formation of the kyanite-quartz veins as wellas the breakdown of lawsonlte into the kyanite-quartz-zoisite assemblage took place during exhumation subsequent to the peak UHP conditions. In this regard, the continental subduction not only brought the water of water-bearing mineral such as lawsonite into the deep mantle, but also released the water from the mineral during exhumation.  相似文献   

16.
The northern margin of the North China Craton (NCC), located between the Paleo-Asian Ocean tectonic region on the north and the NCC on the south, is a key region for studying the tectonic evolution of NCC. A Pre-cambrian retrograded eclogite (2500 Ma or 1800 Ma) was reported in Baimashi near Hengshan Mountain in the NCC, which is characterized by the vermicular symplec-tite of diopside and plagioclase with absence of ompha-cite[1,2]. In Hongqiyingzi Group from the middle part of the …  相似文献   

17.
The existence of pelitic granulite in the Altai orogen was confirmed for the first time by detailed petrographic research and P-Tpseudosection modeling. The pelitic granulite has the assemblage of garnet + cordierite + K-feldspar + biotite + sillimanite + plagioclase + quartz with some samples containing the paragenesis of cordierite + spinel. Peak conditions of the pelitic granuUte determined from the P-T pseudosection involved P = 0.5-0.6 GPa, T= 780-800℃ belonging to medium- to low-pressure type. SHRIMP U-Pb dating of zircon presented a metamorphic age of 292.8 ± 2.3 Ma. The discovery of pelitic granulite reflects an extensional environment with high heat flow in the southern margin of the Altai orogen during the Early Permian, which provides an important petrological constraint on the evolution of the Altai orogen.  相似文献   

18.
We first report discovery of the spinel-garnet-orthopyroxene granulite with pure CO2 fluid inclusions from the Fuyun region of the late Paleozoic Altay orogenic belt in Central Asia, NW China. The rock is characterized by an assemblage of garnet, orthopyroxene, spinel, cordierite, biotite, plagioclase and quartz. Symplectites of orthopyroxene and spinel, and orthopyroxene and cordierite indicate decompression under UHT conditions. Mineral chemistry shows that the orthopyroxenes have high XMg and Al2O3 contents (up to 9.23 wt%). Biotites are enriched in TiO2 and XMg and are stable under granulite facies conditions. The garnet and quartz from the rock carry monophase fluid inclusions which show peak melting temperatures of around -56.7℃, indicating a pure CO2 species being presented during the ultrahigh-T metamorphism in the Altay orogenic belt. The inclusions homogenize into a liquid phase at temperatures around 15.3-23.8℃ translating into CO2 densities of the order of 0.86-0.88g/cm^3. Based on preliminary mineral paragenesis, reaction textures and petrogenetic grid considerations, we infer that the rock was subjected to UHT conditions. The CO2-rich fluids were trapped during exhumation along a clockwise P-T path following isothermal decompression under UHT conditions.  相似文献   

19.
Laboratory experiments and thermal models predic that lawsonite-bearing eclogite should be the dominan rock types for typical oceanic subduction zone[1,2] However, eclogite containing unaltered lawsonite is rare in nature and has been described only from …  相似文献   

20.
U-Pb dating coupled with Hf isotope analyses on zircon from metasedimentary granulite enclaves in the Jiuzhou peraluminous granite from the Shiwandashan area in southeastern Guangxi Province, South China are presented in this paper. The results show that the protoliths of these granulite enclaves were mainly composed of Neo-Mesoproterozoic (564–1061 Ma) clastic materials with a peak age at ~822 Ma. These materials were probably derived from the igneous rocks that were emplaced during the Neoproterozoic breakup of Rodinian Supercontinent. Subordinate sediments include the Paleoproterozoic (1778–2227 Ma) and even the Meso-Paleoarchean materials with the oldest U-Pb age at 3551±8 Ma, indicating the existence of ancient crustal rocks in the area and/or its surrounding regions. Younger grains include the early Mesozoic (234±2 Ma) magmatic zircon populations and the late Permian (253±3 Ma) metamorphic zircon populations. Further zircon Hf isotope analyses reveal that their protoliths were complex, containing both recycled crustal rocks and juvenile materials. Combined zircon U-Pb ages and Hf isotope compositions indicate that at ~253 Ma, the Shiwandashan area experienced an intensive thermal event that resulted in the granulite-facies metamorphism; and that crustal remelting occurred at ~234 Ma to form the S-type granitoids during the uplifting stage. The metasedimentary granulite enclaves are resitites of these granitoids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号