首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 312 毫秒
1.
2.
3.
4.
5.
Nod factors, which are signaling molecules produced by Rhizobia, are the principal determinants of host specificity in Rhizobium-legume symbiosis. Nod factors can elicit a number of characteristic developmental responses in the roots of legumes, such as depolarization of the membrane potential in epidermal cells, specific expression of early nodulin genes and changes in the flux of calcium in root hairs, deformation of root hairs, cell division in the root cortex and formation of the nodule primordinm. Whether the rice plant can respond to signaling molecules (i.e. Nod factors) is an important question, as it could establish the potential for symbiotic nitrogen fixation in rice. The promoter of the soybean (Glycine max) early nodulin gene Gmenod2B fused to the β-glucuronidase (GUS) reporter gene was used as a molecular marker to explore whether Nod factors can be recognized by rice cells as signaling molecules. Transgenic rice plants harboring the chimeric gene Gmenod2BP-GUS were obtained via an Agrobacterium tumefaciens-mediated system. NodNGR factors produced by a broad-host-range Rhizobium strain NGR234(pA28) were used as probes to investigate the activity of the Gmenod2B promoter in rice. Our results showed that the early nodulin gene Gmenod2B promoter was induced by NodNGR factors in transgenic rice, and that it was specifically expressed in rice plant roots. Moreover, GUS gene expression driven by the Gmenod2B promoter in transgenic rice was regulated by nitrogen status. These findings indicated that rice possessed the ability to respond to Nod factor signals, and that this signal transduction system resulted in activation of the Gmenod2B promoter. Thus, we predict that the Nod-factor inducible nodulin expression system, which is similar to Rhizobium-legume symbiosis, may also exist in rice.  相似文献   

6.
7.
Due to complexities and genetic heterogeneities of biological phenotypes, robust computational approaches are desirable to achieve high generalization performance with multiple classifiers, perturbations of the data structures, and biological interpretations. The purpose of this study is to extend our developed ensemble decision approach to distinguish multiple heterogeneous phenotypes and to elucidate the underlying molecular bridges that intertwine the subtypes. Our work identifies the significant molecular mechanisms (disease-relevant genes and functions) that underpin the complex molecular mechanisms for distinction between multiple phenotypes. Feature genes and hierarchical gene cores identified by our method have achieved high accuracy in the classification of multiple phenotypes. The results show that the proposed analysis strategy is feasible and powerful in the classification of biological subtypes and in the explanation of the molecular connections between clinical phenotypes. Biological interpretations with Gene Ontology revealed concerted genetic pathways for some lymphoma subtypes.  相似文献   

8.
9.
Structure and function of Rac genes in higher plants   总被引:3,自引:0,他引:3  
As the sole ubiquitous signal GTP-binding protein in higher plants, Rac genes act as pivotal molecular switches and participate in regulations of many life activities, such as cell morphogenesis and polarity growth, programmed cell death, production of H2O2, cell differentiation, and hormone reaction. Based on our work on rice Rac genes, this paper summarizes the researches on Rac genes in higher plant of the last ten years. It will help us to understand the relation between the signal tranduction and the biological functions of plant Rac.  相似文献   

10.
11.
用基因芯片检测鉴定离子束辐照下水稻中的差异表达基因(DEGs).结果共检测到26个上调和6个下调的差异表达基因.共表达网络分析(RiceNET)表明,这些基因都存在着直接或间接的互作网络,暗示水稻存在着以前没有充分认识的基因网络.为进一步研究植物应答离子束辐照候选基因提供了基础.  相似文献   

12.
 为探讨信号转导通路与异常黑胆质证神经-内分泌-免疫(NEI)网络功能紊乱的关系,采用基因芯片技术检测异常黑胆质证与非异常黑胆质(异常血液质、异常黏液质、异常胆液质)证白细胞结构基因表达水平,筛选差异表达基因,利用生物信息学技术分析差异表达基因参与的相关信号转导通路。芯片结果提示,与非异常黑胆质证相比,异常黑胆质证白细胞中有75个结构基因表达上调,生物信息学分析显示差异表达基因中富集到信号转导生物学过程的基因有12个,这些基因主要涉及MAPK、Toll样受体和Wnt信号转导通路等。由此可见,MAPK、Toll样受体、Wnt信号转导通路在异常黑胆质证患者体内存在异常激活现象,这可能与异常黑胆质证神经-内分泌-免疫网络功能紊乱密切相关。  相似文献   

13.
应用基因芯片显著性分析(SAM)方法,从1组伯基特(Burkitt)淋巴瘤的基因表达数据中,选取了与分期特征相关性比较显著的90个特征基因进行通路分析,发现在相关通路中频繁出现的9个特征基因同属于基因本体论(GO)中的信号转导子类,并且普遍具有与肿瘤发生发展机制相关的信号转导、细胞凋亡、免疫应答等多项功能.其中,有2项功能与伯基特淋巴瘤恶化相关是首次报道.  相似文献   

14.
A photoperiod-sensitive genic male-sterile (PSGMS) line was found in 1973 as a spontaneous mutant of the rice variety Nongken 58 (Oryza sativa ssp. japonica) in Hubei Province, China[1]. The fertility of this line was determined by day length and temperat…  相似文献   

15.
水稻是世界三大粮食作物之一,然而低温胁迫会严重抑制水稻的生长发育。为了探究micoRNA在水稻低温胁迫中的作用,采用低温处理前,5℃低温处理24h和5℃低温处理48h的2~3叶期水稻整株,构建9个小RNA文库。通过高通量测序后,对9个小RNA文库的microRNA进行差异表达分析,一共筛选出21个与冷胁迫相关的microRNA,其中16个在冷胁迫下上调,5个在冷胁迫下下调。通过对这21个microRNA靶基因的CO富集结果表明,其靶基因广泛富集在包括信号转导,免疫系统和物质合成等细胞内过程中。这表明水稻可能通过多种micoRNA 介导,从各个方面来协同抵御低温胁迫。本研究为进一步阐明microRNA响应低温胁迫的分子机制提供了基础,且本研究所鉴定的microRNA为增强水稻对低温耐受性遗传改良提供了优异的miRNA资源。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号