首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
通过对新钢改进钢包吹氩工艺后的钢样电解分析发现,改进后的钢包吹氩工艺对大型夹杂物平均去除率达到了34.3%,特别是对于直径大于300μm的大型夹杂物去除率达到100%.利用扫描电镜对所取金相试样进行了夹杂物分析,确定了钢液中夹杂物的类型主要有:硅酸盐和硫化锰.利用金相显微镜对金相样中的显微夹杂物进行统计分析发现,改进吹氩方案下各个粒径范围的显微夹杂物都有一定减少,由此表明改进吹氩方案对显微夹杂物的去除有显著效果.吹氩的合理与否将直接决定钢液中的大型夹杂物和显微夹杂物的去除率.  相似文献   

2.
采用格子Boltzmann方法对钢液中夹杂物上浮及上浮过程中的碰撞行为进行直接数值模拟研究。结果表明,不同尺寸夹杂物颗粒上浮速度的模拟结果和理论值基本一致,表明本文所采用的数值算法能够精确有效地对钢液中固相夹杂物颗粒运动行为进行研究。当钢液中直径为80μm的夹杂物颗粒位于直径为40μm的下方并一起上浮时,直径为80μm的夹杂物颗粒会逐渐追赶上直径为40μm的夹杂物颗粒并发生碰撞形成大尺寸凝聚体,凝聚体的上浮速度显著大于二者单独上浮时的上浮速度。对于直径为40μm的夹杂物来说,形成凝聚体后的上浮速度比单独上浮时的上浮速度增加300%。实际炼钢过程中,采取必要的措施增加夹杂物颗粒之间上浮过程中的碰撞凝聚,对于提高夹杂物颗粒的上浮速度,尤其是小尺寸夹杂上浮去除速度,提高钢液的洁净度具有重要的意义。  相似文献   

3.
为了探讨低氧特殊钢中大尺寸DS类夹杂物的生成机理,通过ASPEX PSEM explorer自动扫描电镜对比分析国内外低氧特殊钢试样中夹杂物特征(国内、外试样各两个),发现国内试样中夹杂物平均尺寸大于国外试样,夹杂物的最大尺寸则数倍于国外试样:国内试样中夹杂物的最大尺寸分别为24.9和13.1μm,国外试样分别为7.6和7.5μm.对比国内外特钢试样中大尺寸与小尺寸夹杂物可发现二者成分基本相同,推断大尺寸DS类夹杂物可能是细小夹杂物碰撞长大而形成.通过分析大尺寸夹杂物的可能来源,在实验室通过高温共聚焦激光扫描显微镜观察夹杂物在钢中固/液相界面处的行为.结果发现,总氧降低至7×10-6时,尺寸5μm以下的微细夹杂物可被固/液相界面所捕捉,并在固/液相界面处发生碰撞、聚集、长大而生成大尺寸(>12μm) DS类夹杂物.  相似文献   

4.
高品质GCr15轴承钢二次精炼过程中夹杂物的演变规律   总被引:1,自引:1,他引:0  
采用FE-SEM/EDS研究了转炉流程生产的GCr15轴承钢LF、RH精炼过程中夹杂物的演变规律,分析了其演变机理。结果表明:钢中复合夹杂物的演变规律可归纳为:Al2O3→MgO·Al2O3→(CaO-MgO-Al2O3-(CaS))复合氧化物夹杂和Al2O3→(Al2O3-MnS)→(Al2O3-MnS-Ti(C,N))复合氧硫碳氮物夹杂2种方式。LF精炼过程脱硫作用明显,钢中的硫化物夹杂数量大幅减少。LF精炼初期钢中主要是MnS、Al2O3、TiN的单相夹杂物。LF精炼结束后钢中的夹杂物演变为Al2O3为核心外包氧化物及MnS、TiN、Ti(C,N)、CaS的复合夹杂物。精炼渣中的CaO和耐火材料中的MgO经还原后与钢中溶解氧反应导致LF精炼结束时D类夹杂物增加。RH及软吹处理进一步强化了去除钢中的硫化物,但D类及其与A、T类复合的夹杂物含量增加。在LF阶段,夹杂物尺寸主要集中在1~3μm范围内,到RH阶段,夹杂物尺寸则主要集中分布在小于1μm的粒度范围。最大夹杂物尺寸由10.79μm降到5.68μm,单位面积夹杂个数由372个/mm2降到258个/mm2。RH及软吹处理有效地降低了钢中大于3μm的夹杂物。  相似文献   

5.
夹杂物对钢铁的疲劳强度以及疲劳寿命均会产生影响,但是大块试样中的夹杂物情况无法直接用X射线显微计算机断层扫描(X射线显微CT)进行精确成像。为实现对大块试样中夹杂物的三维特征观察,采用非水溶液电解的方法获取大块试样中的夹杂物,利用扫描电镜对电解后的夹杂物进行观察和分析,将夹杂物聚合成为圆柱形样品,最后采用X射线显微CT对夹杂物进行三维扫描,得到了大块试样中夹杂物的三维信息,并对夹杂物的各项尺寸数据进行统计分析。该研究为获取大块钢铁试样中夹杂物的三维形貌提供了新思路。  相似文献   

6.
高温纯铁熔体中外加氧化铝纳米粉的研究   总被引:2,自引:0,他引:2  
在工业纯铁熔体中加入纳米Al2O3颗粒,熔炼后得到铸锭试样. 用扫描电镜(SEM)及能谱(EDS)研究了铸锭金相试样中夹杂物的存在状态及成分. 采用非水溶液电解法分离、收集铸锭中的非金属夹杂物,用SEM及EDS分析了夹杂物的形貌、大小和元素组成. 结果表明,外加的纳米Al2O3颗粒能够在纯铁熔体中稳定存在,并与杂质元素所生成的夹杂物发生复合,复合夹杂物的尺寸为5~10 μm. 纳米Al2O3颗粒一般存在于复合夹杂物的内部. 未发现纳米Al2O3团聚烧结成大于10 μm颗粒的现象. 从热力学和颗粒运动行为方面进一步分析了纳米Al2O3在纯铁熔体中的稳定性和团聚烧结成大颗粒的可能性.  相似文献   

7.
EAF-LF(VD)-VT工艺生产曲拐用钢S34MnV的洁净度研究   总被引:1,自引:0,他引:1  
针对EAF-LF(VD)-VC工艺生产的大型船用S34MnV曲拐探伤不合的问题,分别在电炉还原期、LF-VD精炼期、浇注和锻造后钢锭取样对钢中夹杂物进行了研究.结果表明,精炼期间大于15μm的夹杂物比例波动在1.65%~10.34%之间;钢锭横截面上凝固前沿的柱状晶截获夹杂物的几率不同,帽口中心部位大型夹杂物含量少于边部试样夹杂物含量为5.81mg/10kg;钢锭尾部中心部位夹杂物含量高于边部试样夹杂物含量为25.9mg/10kg;锻造钢锭中夹杂物富集严重,其中尾部DS类夹杂达到了4级以上.钢锭锻造后尾部含有大型夹杂物聚集部分不能完全切除是目前导致产品探伤不合的一个主要原因.  相似文献   

8.
对国内一钢厂EAF→LF→VD→CC工艺生产的高品质GCr15轴承钢进行系统取样,针对DS类非金属夹杂物随机性强的特点,利用能够进行大面积试样检测的ASPEX自动扫描电镜分析统计钢中非金属夹杂物的成分、尺寸、数量等信息。研究发现:GCr15轴承钢冶炼过程中非金属夹杂物主要为MgO- Al2 O3- CaO复合夹杂物和MnS,同时有少量的SiO2- Al2 O3和MgO-Al2 O3复合夹杂物;夹杂物尺寸主要集中在3~8μm,并有少量DS类夹杂物出现且尺寸范围波动很大,最大可以达70μm以上,形貌为圆形或近似圆形;VD有较强的去除夹杂物功能,经过VD真空精炼,夹杂物中CaO含量有增加趋势;吊包至铸坯过程,夹杂物成分向Al2 O3含量增多的区域移动,最终轴承钢铸坯中夹杂物成分位于高Al2 O3含量(≥80%),少量MgO (<20%)和低CaO(<5%)的区域;DS夹杂物的生成和去除具有较强的随机性。  相似文献   

9.
分别采用解剖、总氧分析(T[O])、原位统计分析、金相显微镜统计分析和小样电解实验研究了16.8 t高压锅炉管钢P12铸锭中夹杂物的分布.发现在铸锭的上中部存在夹杂物数量较低的负偏聚区域,而在中心及尾部中心部位存在夹杂物数量较高的正偏聚区域.为了表征夹杂物的偏聚程度,提出了夹杂物偏聚指数的新概念.总氧分析和原位统计分析结果表明铸锭中下部氧化物夹杂物偏聚指数达到1.4~1.6,而在上中部氧化物夹杂物的偏聚指数为0.5~0.7.金相统计分析和小样电解实验可同时分析钢中氧化物和硫化物等夹杂,其分析结果表明铸锭上中部夹杂物的偏聚指数为0.7~0.8,铸锭中下部夹杂物的偏聚指数为1.15~1.35.铸锭中心及锭尾中心区域氧化物夹杂平均尺寸明显大于其他区域,表明大夹杂物在上浮过程中被结晶雨捕获并沉降到底部是铸坯中下部夹杂物偏聚的主要机制.  相似文献   

10.
针对国内某厂以BOF--RH--CC流程生产的IF钢连铸坯,采用氧氮化学分析、光学显微镜分析、扫描电镜分析、能谱分析和金属原位统计分布分析等多种分析方法,综合分析了夹杂物的尺寸、数量、分布以及成分等.结果表明,非稳态浇铸下铸坯二次氧化严重,大型夹杂物增多;铸坯宽度1/4位置表层夹杂物数量高于边部和中部;随着距内弧表面距离的增加,Al系夹杂物平均粒度越来越小,大于10μm的夹杂物比例也越来越小;铸坯表层夹杂物含量和粒度明显高于铸坯内部,其中距内弧6 mm处夹杂物总数最多.  相似文献   

11.
为实现钢液的洁净化,在安泰集团90tBOF-90tLF-150×150mm~2CC生产线上,调整LF精炼中软吹氩流量,并在不同精炼工序和结晶器中取样,用光学显微镜和扫描电镜(SEM-EDS)的分析结果,研究软吹氩流量对ML08Al钢液中夹杂物行为及钙处理对夹杂物的影响。研究结果表明:250~300L/min的软吹氩流量能有效地脱除钢液中的夹杂物,对10μm的夹杂物脱除效果显著;在软吹前后,夹杂物平均尺寸从2.34μm减小到1.18μm,夹杂物面积分数从3 467.7μm~2/mm~2降低到413μm~2/mm~2.当软吹流量达到340L/min时,夹杂物的面积分数急剧上升,脱除效果变差。钙处理把铝脱氧产生的高熔点脆性Al_2O_3和MgO·Al_2O_3夹杂物变性为低熔点的钙铝酸盐类夹杂物;部分夹杂物变性为芯部是Al_2O_3外部包裹CaS的小尺寸球状复合夹杂物。  相似文献   

12.
利用热力学软件计算了齿轮钢氧含量与夹杂物成分控制、夹杂物转变条件.结果表明,20CrMoH钢中具有较高塑性的非金属夹杂物成分(质量分数)为:SiO2 0%~10%、Al2O3 22%~55%、CaO 42%~60%、MgO 5%~10%,与之平衡的钢液中铝的质量分数大于0.020%,钙的质量分数大于0.7×10-6,a[O]为0.0005%左右;选择组成为CaO>40%、Al2O3≤37%、MgO10%、(%CaO+%MgO)/%SiO2为10、SiO2含量尽量低的渣系,钢中Al2 O3、MgO.Al2 O3夹杂物可转变为低熔点的钙铝酸盐.试验发现LF和RH精炼结束时钢液T[O]含量均随炉渣碱度增加而降低,采用高Al2O3含量的炉渣对降低T[O]含量有利;精炼过程钢液中夹杂物按"Al2O3系夹杂物→MgO--Al2O3系夹杂物→CaO--MgO--Al2O3系夹杂物"顺序发生转变,其中MgO--Al2 O3系夹杂物向CaO--MgO--Al2 O3系夹杂物的转变是由外向内逐步进行的,转变速度相对较慢;降低T[O]含量有利于生成较低熔点的CaO--MgO--Al2O3系夹杂物.  相似文献   

13.
对于钢液铝脱氧精炼过程产生的Al_2O_3夹杂物严重影响钢的性能,而在钢液凝固过程中MnS夹杂物容易包裹着Al_2O_3夹杂物形成复合夹杂物,这种复合夹杂物改善钢材的性能有重要意义。通过场发射扫描电镜和能谱对国内某钢厂连铸坯中夹杂物形貌以及组成进行观察与分析,发现大量MnS包裹Al_2O_3复合夹杂物。同时通过理论热力学阐述MnS包裹Al_2O_3复合夹杂物的析出机理,计算得出:Al_2O_3夹杂物在钢液中形成,Mn S夹杂物在钢液凝固过程中形成,由于Al_2O_3夹杂物先析出,Mn S夹杂物可以在先析出的Al_2O_3夹杂物进行形核与长大,为钢中MnS包裹Al_2O_3复合夹杂物生成提供了理论依据。  相似文献   

14.
通过津西钢铁公司H型钢冶炼过程中全氧和氮含量的变化分析了其对H型钢质量的影响,钢中的大型夹杂物和显微夹杂物的类型、形态等.利用体积率法计算了钢中各类型夹杂物的分布情况.钢水一次脱氧不彻底,钢中T[O]高,造成夹杂物多,夹杂含量波动为裂纹的形成埋下隐患;由中间包到铸坯,夹杂物的去除率约为40%左右;大部分夹杂物来源并不单一;铸坯中显微夹杂粒径较小,0~10μm的夹杂占64%以上,而大于20μm的夹杂约占20%.  相似文献   

15.
本文报导了通过光学金相及用扫描电镜对试样断口进行能谱分析等方法,对55SiMnVB 钢中存在的非金属夹杂物进行了形态研究和成分分析,确定了夹杂物的种类,然后又用图象分析仪分析计算了夹杂物的总量(%)以及其中塑性夹杂与脆性夹杂的含量(%)。并进一步探讨了非金属夹杂物对弹簧钢疲劳性能的影响。  相似文献   

16.
利用电子显微镜、金相显微镜、能谱分析,对IF钢铸坯中夹杂物分布、数量和种类进行详细分析。结果表明:薄板坯内平均显微夹杂数量为46个/mm2,其中粒度小于10μm的显微夹杂物占80%左右。在铸坯中心区域夹杂物形成聚集,铸坯表面层夹杂物含量较少。大型夹杂物含量为39.25 mg/10kg,粒度大于300μm的夹杂物约为50%。夹杂物主要来源于结晶器卷渣,脱氧产物和中包覆盖剂。  相似文献   

17.
针对高拉速板坯连铸生产的低碳铝镇静钢铸坯,采用Aspex自动扫描电镜对铸坯表层夹杂物进行大面积的扫描分析,得到不同拉速下夹杂物的变化规律,并探究流场和S含量对夹杂物分布的影响。结果表明:随着拉速增大,钩状坯壳的深度和长度逐渐减小。对拉速大于2 m·min-1的铸坯,由于钩状坯壳不是很发达,铸坯表层没有发现大于200μm的夹杂物。铸坯表层尺寸介于50~200μm的夹杂物主要是由凝固坯壳所捕获,而夹杂物在凝固前沿的受力决定了夹杂物的捕获行为。随着拉速提高,凝固前沿的钢液流速增加,随着冲刷力的增加、捕获力的减少,夹杂物被捕获的数量减少。在高拉速连铸下,如果钢液中S含量较大,夹杂物受到明显的温度Marangoni力,会更容易被凝固坯壳捕获。  相似文献   

18.
系统分析了国内某钢厂复合脱氧工艺下Cr Mo石油钻杆钢夹杂物在EAF-LF-VD-CC流程中的析晶和衍变规律.由于铝酸盐的上浮,LF冶炼前钢中T[O]含量较低,冶炼过程中氮含量逐渐升高.电镜下钢中大尺寸夹杂物(50μm左右)只出现在LF-VD阶段,主要为低熔点的硅锰酸盐、包含Na2O的混合物和含有少量Ca O的镁铝尖晶石,中间包阶段大尺寸夹杂物完全消失.小尺寸夹杂物(<10μm)出现在精炼全过程中,主要成分是Mg、Al、Si和Ca的复合氧化物、Ca S以及二者的复合物,LF冶炼前到中间包阶段小尺寸夹杂物粒径相似,铸坯中其粒径稍微增加.随着精炼过程的进行,钢中小尺寸夹杂物的成分逐渐向复合氧化物的低熔点区域转移,夹杂物中Ca O和Mg O含量存在竞争关系.铸坯中大型夹杂物(>100μm)包括卷渣引起的复合夹杂,耐材剥落产生的Mg O-Ca O夹杂和钢液内生的铝酸盐夹杂.内生铝酸盐与精炼过程中小尺寸夹杂物成分相似,外层包覆Ca S,轧制过程中容易破碎成链状引发钻杆钢裂纹.建议适当延长VD处理后钢液的镇静时间,以去除钢中大型铝酸盐夹杂,提高钻杆钢质量.  相似文献   

19.
采用RH精炼添加钙合金方式对硅钢进行钙处理。结果表明,钙合金添加量为0.67、1.00、1.67kg/t钢时,钢中钙含量分别为0、2×10-6、4×10-6;随着钙合金添加量增大,钢中夹杂物粒度逐渐由0~2μm向2~4、4~6μm偏移;不同钙处理条件下,钢中均存在粒径小于1μm和粒径为1~5μm的MnS、CuxS夹杂物,后者或单独存在,或同AlN、CaS夹杂复合;粒径为5~10μm区间,钢中的夹杂物基本以钙的氧、硫化物为主。与钙处理前相比,钙合金添加量为0.67、1.00、1.67kg/t钢时,粒径小于1.0μm的微细夹杂物减少幅度分别为68.06%、87.50%、94.94%。钙合金添加量为1.67kg/t钢时,可以去除钢中绝大部分的微细夹杂物。  相似文献   

20.
本文研究了镁对H13模具钢中夹杂物的影响,对H13钢中夹杂物的变性进行了热力学计算,分析了镁对夹杂物成分、形貌和粒径分布的影响。结果表明,镁处理H13钢后,夹杂物由Al2 O3转变为MgO·Al2 O3,复合型夹杂物的析出位置也发生了改变,夹杂物粒径变小。镁处理使钢中1μm左右的夹杂物增多,2μm以上的夹杂物减少,随着镁含量的升高,粒径的变化更明显。铝质量分数为0.01%~0.03%的H13钢中,微量的镁就可促使MgO·Al2O3夹杂物形成,镁质量分数超过1×10^-4会导致H13钢中MgO·Al2O3完全消失,镁质量分数在3×10^-5~5.5×10^-5时钢液中镁铝尖晶石的数量达到最多。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号