首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 396 毫秒
1.
The product of the MDR1 gene (P-gp) has been implicated in the transport of cholesterol from plasma membrane to endoplasmic reticulum for esterification. In previous studies on leukemia cell lines, we suggested that cholesterol esterification may regulate the rate of cell growth and that the MDR1 gene might be involved in this process by modulating intracellular cholesterol esters levels. To further investigate this matter, the rate of cell growth, cholesterol metabolism, expression of the MDR1 gene, and P-gp activity were compared in KB cell lines displaying differences in expression and function of P-gp (drug-sensitive phenotype versus MDR phenotype). The rate of cell growth correlated with cholesterol esterification in all KB cell lines, whereas the over-expression of MDR1 observed in the MDR cell lines was not always associated with an increased capacity of cells to esterify cholesterol. Two known inhibitors of P-gp activity, progesterone and verapamil, strongly inhibited both cholesterol esterification and cell proliferation in all KB cell lines, but they affected intracellular accumulation of labeled vinblastine only in MDR cell lines. These results further support a role for cholesterol esters in the regulation of cell growth and suggest that the P-gp expressed in MDR KB cells is not involved in the general process leading to cholesterol esterification. Received 14 February 2000; received after revision 10 April 2000; accepted 8 May 2000  相似文献   

2.
Five types of zymogens of pepsins, gastric digestive proteinases, are known: pepsinogens A, B, and F, progastricsin, and prochymosin. The amino acid and/or nucleotide sequences of more than 50 pepsinogens other than pepsinogen B have been determined to date. Phylogenetic analyses based on these sequences indicate that progastricsin diverged first followed by prochymosin, and that pepsinogens A and F are most closely related. Tertiary structures, clarified by X-ray crystallography, are commonly bilobal with a large active-site cleft between the lobes. Two aspartates in the center of the cleft, Asp32 and Asp215, function as catalytic residues, and thus pepsinogens are classified as aspartic proteinases. Conversion of pepsinogens to pepsins proceeds autocatalytically at acidic pH by two different pathways, a one-step pathway to release the intact activation segment directly, and a stepwise pathway through a pseudopepsin(s). The active-site cleft is large enough to accommodate at least seven residues of a substrate, thus forming S4 through S3′ subsites. Hydrophobic and aromatic amino acids are preferred at the P1 and P1′ positions. Interactions at additional subsites are important in some cases, for example with cleavage of κ-casein by chymosin. Two potent naturally occurring inhibitors are known: pepstatin, a pentapeptide from Streptomyces, and a unique proteinous inhibitor from Ascaris. Pepsinogen genes comprise nine exons and may be multiple, especially for pepsinogen A. The latter and progastricsin predominate in adult animals, while pepsinogen F and prochymosin are the main forms in the fetus/infant. The switching of gene expression from fetal/infant to adult-type pepsinogens during postnatal development is noteworthy, being regulated by several factors, including steroid hormones. Received 25 May 2001; received after revision 27 August 2001; accepted 30 August 2001  相似文献   

3.
Acylphosphatase is one of the smallest enzymes known (about 98 amino acid residues). It is present in organs and tissues of vertebrate species as two isoenzymes sharing over 55% of sequence homology; these appear highly conserved in differing species. The two isoenzymes can be involved in a number of physiological processes, though their effective biological function is not still certain. The solution and crystal structures of different isoenzymes are known, revealing a close packed protein with a fold similar to that shown by other phosphate-bind ing proteins. The structural data, together with an extended site-directed mutagenesis investigation, led to the identification of the residues involved in enzyme catalysis. However, it appears unlikely that these residues are able to perform the full catalytic cycle: a substrate-assisted catalytic mechanism has therefore been proposed, in which the phosphate moiety of the substrate could act as a nucleophile activating the catalytic water molecule. Received 12 November 1996; accepted 27 November 1996  相似文献   

4.
5.
6.
Kinetics of BRCA1 regulation in response to UVC radiation   总被引:1,自引:0,他引:1  
To investigate changes in BRCA1 following DNA damage, we exposed MCF-7 cells to increasing doses of ultraviolet C. We observed an increase in BRCA1 protein levels above 78 J/m2. This increase was observed as early as 5 min after irradiation. BRCA1 levels were then observed to decrease after 2 h, consistent with the previously published data. By pretreating with cycloheximide prior to irradiation, we observed a decrease in the protein half-life, from 3.5 h to 53 min, suggesting that a decrease in protein half-life may cause the lower levels of BRCA1 after irradiation. We also observed an increase in BRCA1 mRNA within 15 min of irradiation, followed by a decrease after 4 h. These data suggest that newly translated protein may contribute to increases in BRCA1 protein levels. The very rapid changes in BRCA1 support its role as a sensor of DNA damage, as opposed to being a repair gene. Received 6 April 2000; received after revision 23 May 2000; accepted 23 May 2000  相似文献   

7.
Cytochrome-c (cyt-c), a multi-functional protein, plays a significant role in the electron transport chain, and thus is indispensable in the energy-production process. Besides being an important component in apoptosis, it detoxifies reactive oxygen species. Two hundred and eighty-five complete amino acid sequences of cyt-c from different species are known. Sequence analysis suggests that the number of amino acid residues in most mitochondrial cyts-c is in the range 104?±?10, and amino acid residues at only few positions are highly conserved throughout evolution. These highly conserved residues are Cys14, Cys17, His18, Gly29, Pro30, Gly41, Asn52, Trp59, Tyr67, Leu68, Pro71, Pro76, Thr78, Met80, and Phe82. These are also known as “key residues”, which contribute significantly to the structure, function, folding, and stability of cyt-c. The three-dimensional structure of cyt-c from ten eukaryotic species have been determined using X-ray diffraction studies. Structure analysis suggests that the tertiary structure of cyt-c is almost preserved along the evolutionary scale. Furthermore, residues of N/C-terminal helices Gly6, Phe10, Leu94, and Tyr97 interact with each other in a specific manner, forming an evolutionary conserved interface. To understand the role of evolutionary conserved residues on structure, stability, and function, numerous studies have been performed in which these residues were substituted with different amino acids. In these studies, structure deals with the effect of mutation on secondary and tertiary structure measured by spectroscopic techniques; stability deals with the effect of mutation on T m (midpoint of heat denaturation), ?G D (Gibbs free energy change on denaturation) and folding; and function deals with the effect of mutation on electron transport, apoptosis, cell growth, and protein expression. In this review, we have compiled all these studies at one place. This compilation will be useful to biochemists and biophysicists interested in understanding the importance of conservation of certain residues throughout the evolution in preserving the structure, function, and stability in proteins.  相似文献   

8.
Two distinct classes of lipocalin isoforms (OBP-IIs and OBP-IIIs) were purified and identified from porcine nasal mucosa of male and female individuals. Using primers designed on their N-terminal sequence, the complete primary structures of the mature polypeptides were determined. Mass spectrometry analysis confirmed the identity of the cDNA-derived sequences and provided information regarding their post-translational modifications. These species strongly resemble a lipocalin expressed by von Ebner's gland and salivary lipocalins carrying sex-specific pheromones secreted only by the boar's submaxillary glands. Both OBP-IIs and OBP-IIIs present two cysteines paired in a disulphide bond; the remaining residues occur in a reduced form. In addition, OBP-IIIs are heavily glycosylated and markedly different in their glycan moiety from the salivary lipocalins. A three-dimensional model is proposed based on protein species with known structure. Like salivary lipocalins, OBP-IIIs bind a number of odorant molecules, with highest affinity for the specific pheromone 5alpha-androst-16-en-3-one. The high similarity between OBPs from the nasal area and lipocalins from secretory glands suggests a common function in binding the same pheromonal ligands, the latter carrying chemical messages into the environment the former delivering them to specific receptors.  相似文献   

9.
10.
Neuronal loss and neuritic/cytoskeletal lesions (synaptic disconnection and proliferation of dystrophic neurites) represent major dementia-associated abnormalities in Alzheimer’s disease (AD). This study examined the role of oxidative stress as a factor contributing to both the cell death and neuritic degeneration cascades in AD. Primary neuron cultures were treated with H2O2 (9–90 μM) or desferrioxamine (2–25 μM) for 24 h and then analyzed for viability, mitochondrial mass, mitochondrial function, and pro-apoptosis and sprouting gene expression. H2O2 treatment causes free-radical injury and desferrioxamine causes hypoxia-type injury without free radical generation. The H2O2-treated cells exhibited sustained viability but neurite retraction, impaired mitochondrial function, increased levels of the pro-apoptosis gene product CD95/Fas, reduced expression of N2J1-immunoreactive neuronal thread protein and synaptophysin, and reduced distribution of mitochondria in neuritic processes. Desferrioxamine treatment resulted in dose-dependent neuronal loss associated with impaired mitochondrial function, proliferation of neurites, and reduced expression of GAP-43, which has a role in path-finding during neurite outgrowth. The results suggest that oxidative stress can cause neurodegeneration associated with enhanced susceptibility to apoptosis due to activation of pro-apoptosis genes, neurite retraction (synaptic disconnection), and impaired transport of mitochondria to cell processes where they are likely required for synaptic function. In contrast, hypoxia-type injury causes neuronal loss with proliferation of neurites (sprouting), impaired mitochondrial function, and reduced expression of molecules required to form and maintain synaptic connections. Since similar abnormalities occur in AD, both oxidative stress and hypoxic injury can contribute to AD neurodegeneration. Received 24 May 2000; received after revision 7 July 2000; accepted 27 July 2000  相似文献   

11.
Serine proteases have been shown to play a multifarious role in health and disease. As a result, there has been considerable interest in the design and development of synthetic inhibitors of these enzymes. In view of their diverse roles in biological processing events, one of the great challenges in such endeavours has been the need to produce compounds with exquisite selectivity. Inhibitor design has been broadly guided by the use of either peptide- or heterocyclic-based compounds, designed to exploit the known substrate specificity characteristics of individual enzymes. This review describes the thinking and strategies employed in such efforts. Received 8 August 2000; received after revision 16 November 2000; accepted 17 November 2000  相似文献   

12.
Sry and Sox9: mammalian testis-determining genes   总被引:13,自引:0,他引:13  
  相似文献   

13.
E-selectin, exclusively expressed on activated endothelial cells, is a potential target for site-directed delivery of agents. We and others have shown that sialyl Lewisx-liposomes (sLex-liposomes) are recognized by E-selectin. We now report an approach employing sLex-liposomes to deliver antisense oligonucleotides (AS-ODNs) directed against the adhesion molecule ICAM-1 to activated vascular endothelial cells. ICAM-1 expression was analyzed at the protein level by immunofluorescence and a cell surface ELISA, and at the RNA level by RT-PCR. We have investigated two different AS-ODNs complementary to the 3′ untranslated region and the AUG translation initiation codon of ICAM-1 mRNA. Both inhibited protein expression, but did not influence the mRNA level, pointing to a hybridization of AS-ODNs with the mRNA in the cytoplasm. Our results demonstrate the feasibility of a novel approach for the delivery of agents to activated endothelial cells by glycoliposomes targeted to E-selectin. Received 16 October 2000; revised 29 November 2000; accepted 29 November 2000  相似文献   

14.
The most alkaline form of pectin methylesterase was purified from ripe carrot roots and used for structural analysis. Determination of an N-terminal blocking group and of the primary structure allowed comparisons with other forms, and facilitated crystallographic determination of the three-dimensional structure. The mature enzyme has 319 residues and the N-terminal blocking group was shown to be a pyroglutamyl residue derived from a glutaminyl cyclization. Few other methylesterases have been isolated and assigned to exact mature forms, and together with the present enzyme, only two have been analyzed in three-dimensional structure. However, comparison of 39 forms, mainly from GenBank data, reveals clear relationships and identifies sub-groups of this enzyme type, deviating in structure but centering around two functionally important and conserved Asp residues at positions 136 and 157 in the carrot enzyme. Received 2 January 2002; accepted 4 January 2002  相似文献   

15.
In a previous study, we identified and purified a 99-amino-acid rat liver-kidney perchloric-acid-soluble 23-kDa protein (P23) which displays 30% identity with a highly conserved domain of heat shock proteins (HSPs), as well as an AT-rich 3 untranslated region, which has also been described to play a role in H70 mRNA life span and protein expression. An identical perchloric-acid-soluble protein inhibiting protein synthesis in a rabbit reticulocyte lysate system was also found 2 years later by another group. More recently, the novel, the YjgF, protein family has been described, comprising, 24 full-length homologues, including P23, highly conserved through evolution, and consisting of approximately 130 residues each and sharing a common ternary structure. Independent studies from different laboratories have provided various hypothetical functions for each of these proteins. The high degree of evolutionary conservation may suggest that these proteins play an important role in cellular regulation. Although the function of none of these proteins is known precisely, we present experimental evidence which, combined with the relationship to glucose-regulating protein revealed here, and the relationship to fatty-acid-binding protein revealed by others, allow us to propose a role for P23. In rat liver, P23 expression is developmentally regulated and modulated by dietary glucose, and its mRNA is induced by starvation, in the presence of fatty-acids and in 3-MeDAB-induced hepatomas. The mRNA encoding mouse liver P23 is also hormonally modulated in a mouse line AT1F8. These data indicate that P23 protein might be a key controller of intermediary metabolism during fasting.Received 7 June 2003; received after revision 8 September 2004; accepted 10 October 2004  相似文献   

16.
17.
The production of antimicrobial peptides represents a first-line host defense mechanism of innate immunity that is widespread in nature. Only recently such effectors were isolated in crustacean species, whereas numerous antimicrobial peptides have been characterized from other arthropods, both insects and chelicerates. This review presents findings on a family of antimicrobial peptides, named penaeidins, isolated from the shrimp Penaeus vannamei. Their structure and antimicrobial properties as well as their immune function will be discussed through analyses of penaeidin gene expression and peptide distribution upon microbial challenge. Received 21 January 2000; received after revision 10 March 2000; accepted 10 March 2000  相似文献   

18.
The Ca2+ pump of the plasma membrane (PMCA) is regulated by a number of agents. The most important is calmodulin (CaM), which binds to a domain located in the C-terminal portion of the pump, removing it from an autoinhibitory site next to the active site. The CaM-binding domain is preceded by an acidic sequence which contains a hidden signal for endoplasmic reticulum (ER) retention. Chimeras of the PMCA and endoplasmic reticulum (SERCA) pumps have revealed the presence of a strong signal for ER retention in the first 45 residues of the SERCA pump. Four gene products of the PMCA pump are known: two of them (1 and 4) are ubiquitously expressed, two (2 and 3) are specific for nerve cells and may be induced by their activation. Mutagenesis work has identified four residues in three of the transmembrane domains of the pump which may be components of the trans-protein Ca2+ path. The mutation of two of these residues alters the membrane targeting of the pump.  相似文献   

19.
Carboxypeptidases perform many diverse functions in the body. The well-studied pancreatic enzymes (carboxypeptidases A1, A2 and B) are involved in the digestion of food, whereas a related enzyme (mast-cell carboxypeptidase A) functions in the degradation of other proteins. Several members of the metallocarboxypeptidase gene family (carboxypeptidases D, E, M and N) are more selective enzymes and are thought to play a role in the processing of intercellular peptide messengers. Three other members of the metallocarboxypeptidase gene family do not appear to encode active enzymes; these members have been designated CPX-1, CPX-2 and AEBP1/ACLP. In this review, we focus on the recently discovered carboxypeptidase Z (CPZ). This enzyme removes C-terminal Arg residues from synthetic substrates, as do many of the other members of the gene family. However, CPZ differs from the other enzymes in that CPZ is enriched in the extracellular matrix and is broadly distributed during early embryogenesis. In addition to containing a metallocarboxypeptidase domain, CPZ also contains a Cys-rich domain that has homology to Wnt-binding proteins; Wnts are important signaling molecules during development. Although the exact function of CPZ is not yet known, it is likely that this protein plays a role in development by one of several possible mechanisms.  相似文献   

20.
Semenogelin I: a coagulum forming, multifunctional seminal vesicle protein   总被引:8,自引:0,他引:8  
Human seminal plasma spontaneously coagulates after ejaculation. The major component of this coagulum is semenogelin I, a 52-kDa protein expressed exclusively in the seminal vesicles. Recently, a sperm motility inhibitor has been found to be identical to semenogelin I, suggesting that it may also be a physiological sperm motility inhibitor. The protein is rapidly cleaved after ejaculation by the chymotrypsin-like prostatic protease prostate-specific antigen, resulting in liquefaction of the semen coagulum and the progressive release of motile spermatozoa. Some of the cleavage products of Sg I may also have various biological functions. While the semenogelin I protein is unique to human and higher primates, it has recently been shown to belong to a gene family having a similar gene structure but encoding widely differing proteins. The recently elucidated characteristics of the semenogelin I gene as well as the biochemical and functional properties of the encoded protein are reviewed, and an attempt is made to integrate the various findings into a model for semen coagulation, sperm immobilization and potential other functions. Received 21 October 1998; received after revision 15 December 1998; accepted 15 December 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号