首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以WC粉为基体,Co粉为粘结相,添加纳米Y2O3,通过球磨、压制成型和微波烧结制备WC-Co硬质合金。结果表明:制备的试样相结构为WC和η相(Co3W3C相),随烧结温度提高,试样的相对密度明显增大,在1 300℃时达到最高值,继续升高到1 320℃时出现局部熔融现象,随保温时间延长,试样的相对密度明显增大,但保温20 min后趋于稳定。加入纳米Y2O3可以明显细化晶粒,且其硬度和抗弯强度有一定程度提高。  相似文献   

2.
机械合金化制备WC—Co纳米硬质合金   总被引:17,自引:0,他引:17  
本文利用机械合金化技术研究了WC-Co的合金化过程,成功地制备出纳米WC-Co合金粉末,通过真空烧结成型工艺获得了平均晶粒度小于200nm的WC-Co硬质合金,其硬度达到17.4kN/mm2,烧结密度为10.9g/cm3.对纳米WC-Co粉末的烧结工艺作了初步探讨,通过添加少量的VC能有效地抑制烧结过程中晶粒的长大.  相似文献   

3.
A high-entropy alloy-ceramic gradient composite of TiC-TiB2/75vol% Al0.3CoCrFeNi was successfully prepared by combustion synthesis under an ultra-high gravity field, which is a low-cost method with high efficiency. The ceramic particles were gradient distributed in the Al0.3CoCrFeNi matrix, and the hardness of the composite material gradually decreased along the thickness direction. The anti-penetration performance of the gradient composites was simulated using the ANSYS/LS-DYNA explicit simulation program. The results demonstrate that the distribution of the ceramic particles strongly affected the mechanical properties and the anti-penetration performance of the composites. With the same total ceramic volume fraction, the gradient composites exhibit better anti-penetration performance than the corresponding ceramic-metal interlayer composites. The more uneven the ceramic distribution, the greater the elastic modulus and yield stress of the surface layer and, thus, the better the anti-penetration performance.  相似文献   

4.
为研究冲击载荷氧化铝陶瓷的动态响应特性,采用DISAR测试系统,测得了氧化铝陶瓷试件的自由面粒子速度时程曲线. 实验结果表明,在不同的实验条件下,粒子速度时程曲线的上升前沿出现了不同程度的趋缓现象,这说明陶瓷材料在冲击载荷作用下表现出了 "类塑性"的特征. 同时,实验中陶瓷材料的Hugoniot弹性极限存在着随试件厚度增加而衰减的变化规律,这在一定程度上反映了陶瓷材料的动态响应特性.   相似文献   

5.
CVD金刚石涂层硬质合金工具表面预处理新技术   总被引:3,自引:0,他引:3  
研究了利用(KOH K3(Fe(CN)6) H2O和H2SO4 H2O2)两种溶液浸蚀硬质合金基体,分别选择性刻蚀WC和Co的表面预处理过程.在浸蚀过的硬质合金基体上,用强电流直流伸展电弧等离子体CVD法沉积金刚石薄膜涂层.结果表明,两步混合处理法不仅可以有效地去除硬质合金基体表面的钴,而且还显著粗化硬质合金基体表面,提高了金刚石薄膜的质量和涂层的附着力.  相似文献   

6.
为了研究桥箔电爆炸驱动飞片过程中,桥区宽度和加速膛材料对飞片速度的影响,采用AUTODYN软件对这一过程进行数值模拟.模拟结果表明,相比于0.27 mm、0.30 mm、0.33 mm、0.36 mm和0.42 mm的桥区宽度,0.24 mm桥区宽度所驱动的飞片速度最大.对飞片经铝、镍、铜和氧化铝陶瓷四种材料加速膛剪切后,飞片速度和形貌进行了模拟,结果表明氧化铝陶瓷的硬度大,可以提高飞片速度和剪切效果,且加速膛发生形变小,优于其它三种材料.  相似文献   

7.
为研究45#钢丝拉拔加工过程中受力和Al2O3-TiC/Al2O3-TiC-CaF2叠层陶瓷拉拔模具磨损情况,采用真空热压烧结方式制备Al2O3-TiC/Al2O3-TiC-CaF2叠层陶瓷拉拔模具,并将其固定在万能拉伸试验机上进行钢丝拉拔实验。 采用三维造型软件SolidWorks建立钢丝坯料和拉拔模具的有限元模型,通过有限元模拟软件对钢丝拉拔成形过程进行仿真分析,得到45#钢丝在变形过程中的轴向应力、应变以及拉拔力的变化情况。 扫描电镜(SEM)及能量弥散X射线谱(EDS)观察拉拔模具磨损后的微观形貌。 结果表明:叠层陶瓷拉拔模具工作区的Al2O3-TiC-CaF2材料层比Al2O3-TiC材料层磨损严重,Al2O3-TiC-CaF2材料层的固体润滑膜被拖覆到Al2O3-TiC材料层,模具整体具有自润滑性能。 实际测量拉拔力与公式计算所得拉拔力相吻合,模拟所得拉拔力比实际测量拉拔力小。   相似文献   

8.
Metal/ceramic composite materials can be divided into two groups: one is ceramic reinforced metal matrix composite, and the other is metal toughened ceramic matrix composite. The research on these materials mainly focuses on the mechanical properties due …  相似文献   

9.
To investigate the formation mechanism of calcium hexaluminate (CaAl12O19, CA6), the analytically pure alumina and calcia used as raw materials were mixed in CaO/Al2O3 ratio of 12.57:137.43 by mass. The raw materials were ball-milled and shaped into green specimens, and fired at 1300–1600°C. Then, the phase composition and microstructure evolution of the fired specimen were studied, and a first principle calculation was performed. The results show that in the reaction system of CaO and Al2O3, a small amount of CA6 forms at 1300°C, and greater amounts are formed at 1400°C and higher temperatures. The reaction is as follows: CaO·2Al2O3 (CA2) + 4Al2O3 → CA6. The diffusions of Ca2+ in CA2 towards Al2O3 and Al3+ in Al2O3 towards CA2 change the structures in different degrees of difficulty. Compared with the difficulty of structural change and the corresponding lattice energy change, it is deduced that the main formation mechanism is the diffusion of Ca2+ in CA2 towards Al2O3.  相似文献   

10.
Al2O3-SiC纳米复合陶瓷的制备及其表征   总被引:4,自引:0,他引:4  
以分析纯Al(NO3)3·9H2O, (CH2)6N4和粒径为30 nm的SiC粉末为原料, 采用溶胶-凝胶(sol-gel)方法制备干凝胶, 经煅烧合成Al2O3-SiC纳米陶瓷粉, 利用真空热压装置对粉末进行烧结. 通过X射线衍射(XRD)、 扫描电镜(SEM)和维氏硬度实验分析了不同SiC含量和不同烧结温度的Al2O3-SiC陶瓷样品的结构、 形貌、 晶粒尺寸和硬度, 并研究了其机理.  相似文献   

11.
The 0.1 mol% Er^3+ and 0-2 mol% Yb^3+ codoped Al2O3 powders were prepared by the sol-gel method, and the phase structure, including only two crystalline types of doped Al2O3 phase, γ-(Al,Er, Yb)2O3 and θ-(Al,Er, Yb)2O3, was detected at the sintering temperature of 1000℃. The visible and near infrared emissions properties depended strongly on the Yb^3+ codoping, and the corresponding maximal peak intensities centered at about 523, 545, 660 and 1533 nm were obtained respectively for the 0.1 mol% Er^3+ and 0.5 mol% Yb^3+ codoped Al2O3 powders, which were composed of θ-(Al,Er,Yb)2O3 and a small amount of γ-(Al,Er, Yb)2O3 phases. The two-photon absorption process was responsible for the visible up-conversion emissions, and the one-photon absorption process was involved in the near infrared emissions of the Er^3+-yb^3+ codoped Al2O3 powders.  相似文献   

12.
Oxide eutectic ceramic in situ composites have attracted significant interest in the application of high-temperature structural materials because of their excellent high-temperature strength, oxidation and creep resistance, as well as outstanding microstructural stability. The directionally solidified ternary Al2O3/YAG/ZrO2 hypereutectic in situ composite was successfully prepared by a laser zone remelting method, aiming to investigate the growth characteristic under ultra-high temperature gradient. The microstructures and phase composition of the as-solidified hypereutectic were characterized by using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). The results show that the composite presents a typical hypereutectic lamellar microstructure consisting of fine Al2O3 and YAG phases, and the enriched ZrO2 phases with smaller sizes are randomly distributed at the Al2O3/YAG interface and in Al2O3 phases. Laser power and scanning rate strongly affect the sample quality and microstructure characteristic. Additionally, coarse colony microstructures were also observed, and their formation and the effect of temperature gradient on the microstructure were discussed.  相似文献   

13.
Developments in the contents of different typical inclusions in 3104 alloy melt were described during heating and holding processing. The settling process of inclusion particles was investigated by measuring the contents of inclusions in the surface, center, and bottom layers of the molten metal. In the results, main inclusions observed and determined by Prefil and PoDFA methods are MgO, Al2O3, spinel (MgAl2O4), and TiB2 particles or thin films. It is found that some small particles of Al2O3 and MgO are transformed into spinel particles, and the formation rate increases as the temperature and the holding period of melt increase. The content of inclusions increases from 3.37 mm2·kg-1 to 7.54 mm2·kg-1 and then decreases to 3.08 mm2·kg-1 after holding for 90 min. This is attributed to a settling phenomenon and a significant increase in settling velocity after holding for 60 min. The content of inclusion particles decreases by means of settlement and flotation in liquid aluminum with an increase in holding time. The theoretical analysis and experiment results are in essential agreement with those from industrial production.  相似文献   

14.
In-situ(TiC_xN_y–TiB_2)/Ni cermets with 70 wt%TiC_xN_y–TiB_2 were successfully fabricated by combustion synthesis and hot pressing sintering in Ni-Ti-B_4C-BN powder systems.The microstructures,density,compressive properties,and hardness of the TiC_xN_y–TiB_2/Ni cermets with the addition of 0–8 wt%Cr/Mo to the Ni-Ti-B_4C-BN powder systems were compared and analysed.The results showed that the ceramic particles distributed uniformly in the cermets,and the size of the ceramic particles reduced with the Cr/Mo addition.Both Cr and Mo addition can improve the hardness,compressive properties,and fracture strains of the cermets.The hardness,compressive strength,and fracture strain of the(TiC_xN_y–TiB_2)/(Ni+Cr)cermets increased from 1561 HV,2.94 GPa,and 2.9%to 1864 HV,3.65 GPa,and 3.4%,respectively when the Cr content increased to 5 wt%.The hardness and compressive strength of the(TiC_xN_y–TiB_2)/(Ni+Mo)cermets increased from 1561 HV and 2.94 GPa to 1902 HV and 3.43 GPa,respectively when the Mo content increased to 8 wt%.The cermets with Cr had better compressive properties than the cermets with Mo.  相似文献   

15.
In this study, a powder mixture with an Al/TiO2 molar ratio of 10/3 was used to form an r-Al2Ti intermetallic matrix composite (IMC) reinforced withα-Al2O3 ceramic by a novel milling technique, called ...  相似文献   

16.
The Er3 doped Al2O3 powders were prepared by the sol-gel method using the aluminium isopropoxide [Al(OC3H7)3]-derived Al2O3 sols with addition of the erbium nitrate [Er(NO3)3.5H2O]. The different phase structure, including three crystalline types of (Al,Er)2O3 phases, γ, θ, α, and two Er-Al-O phases, ErAlO3 and Al10Er6O24, was obtained with the 1 mol% Er3 doped Al2O3 powders at the different sintering temperatures of 600―1200℃. The green and red up-conversion emissions centered at about 523, 545 and 660 nm, corresponding respectively to the 2H11/2, 4S3/2→4I15/2 and 4F9/2→4I15/2 transitions of Er3 , were detected by a 978 nm semiconductor laser diodes excitation. The phase structure and OH content had evident influence on the up-conversion emissions intensity. The maximum intensities of both the green and red emissions were obtained respectively for the Er3 doped Al2O3 powders sintered at 1200 ℃, which was composed mainly of α-(Al,Er)2O3, less of ErAlO3 and Al10Er6O24 phases, and with the least OH content. The two-photon absorption up-conversion process was involved in the green and red up-conversion emissions of the Er3 doped Al2O3 powders.  相似文献   

17.
Analytical-reagent-grade Al2O3 was added to magnetite ore during the process of pelletizing, and the methods of mercury intrusion, scanning electron microscopy, and image processing were used to investigate the effect of Al2O3 on the compressive strength of the pellets. The results showed that, as the Al2O3 content increased, the compressive strength of the pellets increased slightly and then decreased gradually. When a small amount of Al2O3 was added to the pellets, the Al2O3 combined with fayalite (2FeO·SiO2) and the aluminosilicate (2FeO·2Al2O3·5SiO2) was generated, which releases some iron oxide and reduces the inhibition of fayalite to the solid phase of consolidation. When Al2O3 increased sequentially, high melting point of Al2O3 particles hinder the oxidation of Fe3O4 and the recrystallization of Fe2O3, making the internal porosity of the pellets increase, which leads to the decrease in compressive strength of the pellets.  相似文献   

18.
Metal Sm has been widely used in making Al-Sm magnet alloy materials. Conventional distillation technology to produce Sm has the disadvantages of low productivity, high costs, and pollution generation. The objective of this study was to develop a molten salt electrolyte system to produce Al-Sm alloy directly, with focus on the electrical conductivity and optimal operating conditions to minimize the energy consumption. The continuously varying cell constant (CVCC) technique was used to measure the conductivity for the Na3AlF6-AlF3-LiF-MgF2-Al2O3-Sm2O3 electrolysis medium in the temperature range from 905 to 1055℃. The temperature (t) and the addition of Al2O3 (W(Al2O3)), Sm2O3 (W(Sm2O3)), and a combination of Al2O3 and Sm2O3 into the basic fluoride system were examined with respect to their effects on the conductivity (κ) and activation energy. The experimental results showed that the molten electrolyte conductivity increases with increasing temperature (t) and decreases with the addition of Al2O3 or Sm2O3 or both. We concluded that the optimal operation conditions for Al-Sm intermediate alloy production in the Na3AlF6-AlF3-LiF-MgF2-Al2O3-Sm2O3 system are W(Al2O3) + W(Sm2O3)=3wt%, W(Al2O3):W(Sm2O3)=7:3, and a temperature of 965 to 995℃, which results in satisfactory conductivity, low fluoride evaporation losses, and low energy consumption.  相似文献   

19.
The fabrication of an alumina-metal composite coating onto a carbon steel substrate by using a self-propagating high-temperature synthesis technique was demonstrated. The effects of the type and thickness of the pre-coated layer on the binding structure and surface quality of the coating were systematically investigated. The macrostructure, phase composition, and bonding interface between the coating and the substrate were investigated by scanning electronic microscopy (SEM), X-ray diffraction (XRD), and energy-dispersive X-ray spectrometry (EDS). The diffraction patterns indicated that the coating essentially consisted of α-Al2O3, Fe(Cr), and FeO·Al2O3. With an increase in the thickness of the pre-coated working layer, the coating became more smooth and compact. The transition layer played an important role in enhancing the binding between the coating and the substrate. When the pre-coated working layer was 10 mm and the pre-coated transition layer was 1 mm, a compact structure and metallurgical bonding with the substrate were obtained. Thermal shock test results indicated that the ceramic coating exhibited good thermal shock resistance when the sample was rapidly quenched from 800°C to room temperature by plunging into water.  相似文献   

20.
A low cost chemical co-precipitation method was employed to fabricate nanoscale Al_2O_3-GdAlO_3-ZrO_2 powder with eutectic composition. A careful control of reaction conditions was required during the preparation. The synthesized nanopowders exhibited a particle size of 20-200 nm, and were highly dispersive and uniform. The results showed that calcination temperature had an important influence on the phase constituents of the nanopowders. With increasing the calcination temperature, a phase transformation from θ-Al_2O_3 to α-Al_2O_3 and a thermal decomposition from Gd_3 Al_5O_(12)(GdAG) to GdAlO_3 and α-Al_2O_3 occurred in sequence. A calcination temperature of 1300 ℃ was needed for the crystallization of α-Al_2 O_3. These nanosized powders were consolidated via hot pressing to produce a fully densified ceramic composite with eutectic composition. The Al_2O_3-GdAlO_3-ZrO_2 ceramic hot-pressed at 1500 ℃ exhibited a relative density of 99.4%, a flexural strength of 485 MPa and a fracture toughness of 6.5 MPa m~(1/2). The ceramic had a thermal conductivity of 1.9 W m K~(-1) at 1200 ℃ and a thermal expansion coefficient of 9.49 ×10~(-6) K~(-1) at 1100 ℃.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号