首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
为了研究再生混凝土取代率对方钢管再生混凝土柱型钢再生混凝土梁框架节点抗震性能的影响,设计四个中节点试件进行低周反复加载试验,研究了试件的破坏过程与受力模式、抗震性能指标、节点连接处承载力计算方法.研究表明:试件均发生梁端混凝土的受弯破坏,钢管与梁端界面伴有黏结滑移迹象;试件滞回曲线饱满,受再生骨料取代率的影响不明显;各试件峰值承载力相近,理论计算值与试验值吻合较好,延性系数和等效黏滞阻尼系数均分别大于4和0.4,试件具有较好的抗震变形与耗能能力.  相似文献   

2.
为研究圆钢管再生混凝土柱的抗震性能,考虑不同再生粗骨料取代率、剪跨比、轴压比等参数,设计了7个足尺试件,进行拟静力试验研究,对比分析了各试件的破坏特征、滞回曲线、承载力、延性、刚度退化、耗能能力等特性.试验结果表明:加载后期,所有试件均在钢管底部出现环状鼓曲,剪跨比小的部分试件受拉一侧发生断裂;各试件的滞回曲线基本呈梭形,比较饱满,延性较好;不同粗骨料取代率对试件的抗震性能影响不大;随着剪跨比的增大,试件的承载力降低,延性变好;轴压比大的试件延性较差;各试件抗震性能良好,满足抗震要求.通过我国相关规范和规程对本文及其他文献中圆钢管再生混凝土柱压弯承载力的计算分析发现,对于足尺圆钢管再生混凝土柱,我国规范的相关公式是偏于安全的.  相似文献   

3.
为研究端板与柱间灌浆层对端板连接RCS节点抗震性能的影响,以端板与柱间灌浆层厚度、灌浆层强度以及螺栓预拉力为主要研究参数,进行了4个端板连接RCS节点试件的低周反复加载试验.基于试验数据,研究了各试件的破坏形态、滞回性能、承载能力、刚度退化规律、延性、耗能能力和变形组成等.试验结果表明:强柱弱梁型端板连接RCS节点的破坏形态为梁铰破坏机制,灌浆层出现压碎脱落现象,整个受力过程中钢梁端板、灌浆层和柱面之间连接紧密,未出现滑移现象,端板和RCS节点之间的连接和传力可靠,表现出良好的受力性能.各试件滞回曲线呈梭形,梁端塑性铰充分耗散能量,具有较好的抗震性能;反复荷载作用下端板与柱间灌浆层的损伤累积导致节点延性和耗能能力降低,其降低幅度随灌浆层损伤程度增加而增大;各试件刚度退化规律基本一致,灌浆层的损伤累积导致刚度退化加剧;节点的变形主要来自钢梁的变形,在整个加载过程中,各试件端板连接变形较小,在极限位移角时,试件RCS1、RCS3和RCS4由端板连接变形引起的位移所占比例分别为1.5%、1.8%和2.7%.各试件弯矩-转角关系曲线呈现出明显的非线性特征,试件RCS1~RCS4按刚度分类均属于半刚接节点,节点初始转动刚度随灌浆层厚度增加而提高,但提高幅度有限.  相似文献   

4.
为了研究方钢管混凝土柱—不等高钢梁加腋框架节点受力性能,按1:3缩尺比例设计并制作了六个节点试件,进行了低周期往复荷载破坏试验。节点试件的加腋坡度及梁高差比是试验研究的主要参数。通过试验研究各参数对节点试件的破坏特点、抗剪承载力、滞回特性、延性及耗能能力、承载力退化与刚度退化等力学性能的影响,得出以下结论:试件破坏是由于节点抗剪承载力不足导致的,但由于加强环板的约束及梁端加腋的存在,破坏出现在下环板与柱端交接处;各试件滞回曲线整体相对饱满;随着节点试件加腋坡度的变缓,其极限承载力提高,延性系数增加,耗能能力增强,刚度退化速率略有加快;当梁高差比由0. 39增加至0. 46时,节点试件反向加载极限承载力提高(以拉为反向加载),当梁高差比由0. 46增加至0. 53时,节点试件反向加载极限承载力降低,且随着梁高差比的增加,节点试件正向加载极限承载力逐渐降低(以推为正向加载),延性系数降低,耗能能力减弱,刚度退化速率变化不大;梁端加腋能有效改善节点核心区受力性能。  相似文献   

5.
目的对比分析两种框架节点的抗震性能,选出性能较好的框架节点,为工程实践提供试验依据和技术支持.方法对两个方钢管混凝土柱-钢梁节点和两个矩形钢管混凝土梁节点进行伪静力试验,以轴压比和梁柱线刚度比为变化参数,研究分析两种节点的破坏特征及机理、滞回曲线、延性和刚度退化等性能.结果 4个节点试件的破坏机理基本相同,首先是节点加强环板外的梁端产生塑性铰,然后依靠塑性铰区的转动耗散能量.与钢梁节点相比,矩形钢管混凝土梁节点的滞回曲线无明显"捏缩"现象,包络面积较大,耗能能力较强;位移延性系数可达到4.32,而钢梁节点为3.51,延性和变形能力较好,刚度退化程度较缓慢.结论矩形钢管混凝土梁节点的抗震性能优于钢梁节点,有进一步推广应用的价值.  相似文献   

6.
通过9个型钢混凝土L形柱空间角节点模型试件的低周反复加载试验,以揭示该类节点的抗震性能指标.观察了其破坏过程及形态、得到荷载-位移滞回曲线、骨架曲线及特征点参数等抗震性能指标,并对柱截面配钢形式、轴压比、加载角度以及连接梁的结构形式4个变化参数对抗震性能的影响规律进行了深入分析.结果表明:型钢混凝土L形柱空间角节点发生了伴随扭转的节点核心区破坏;滞回曲线饱满、位移延性系数较大、耗能能力强;强度、刚度衰减退化过程缓慢,表现出较好的抗震性能.  相似文献   

7.
设计并制作4根钢管高强再生混凝土圆柱,考虑再生粗骨料取代率单参数,对其进行拟静力试验,观察它们在试验过程中的受力和破坏形式;研究不同再生粗骨料取代率对试件的滞回曲线、骨架曲线、承载力和延性、耗能性能、刚度退化等抗震性能的影响.结果表明:圆钢管高强再生混凝土柱的受力和变形与普通圆钢管高强混凝土柱的基本相同,滞回曲线普遍饱满,没有出现捏拢现象;再生骨料取代率对试件初始刚度略有降低,对试件的耗能、承载力以及后期的刚度退化影响不大;对比普通圆钢管高强混凝土柱,圆钢管高强再生混凝土柱的延性系数较大,具备良好的抗震性能.  相似文献   

8.
为了从结构层面对钢管再生混凝土框架结构的抗震性能进行研究,以梁截面高度为变化参数,设计制作了2榀100%取代率的方钢管再生混凝土柱—钢筋再生混凝土梁框架,并对其进行低周反复加载试验。结果表明:框架的滞回曲线呈现为饱满的梭形,试件破坏时的等效黏滞阻尼系数heu在0.22以上,表明该框架结构具有良好的耗能性能;试件破坏时的层间位移转角在1/39左右,表明该框架结构具有较好的抗倒塌能力。随着梁截面高度的增加,试件的承载能力及初始弹性刚度会逐渐上升,而其延性系数则会逐渐下降;峰值荷载之前,增加梁的截面高度可以提升框架的耗能性能,峰值荷载之后,增加梁的截面高度则会降低框架的耗能性能,而梁截面高度对框架在达到峰值荷载后的残余刚度影响则相对较小。  相似文献   

9.
为研究型钢再生混凝土柱-钢梁组合框架边节点的抗震性能,对3榀不同轴压比下的边节点试件进行了低周反复荷载试验,观察边节点的破坏过程及特征,分析该边节点的荷载-位移滞回曲线、骨架曲线、承载能力、刚度退化、强度衰减、层间位移角、延性以及耗能能力等抗震性能指标,重点研究轴压比对边节点抗震性能的影响规律.结果表明:组合框架边节点的破坏特征为节点核心区发生明显的剪切斜压破坏;荷载—位移滞回曲线呈梭形状且较为饱满,位移延性系数在2. 61~3. 56之间,弹塑性层间位移角和等效黏滞阻尼系数分别介于1/43~1/29和0. 162~0. 218之间,这表明该边节点具有较好的抗震性能;另外,适当增加轴压比对提高边节点抗剪承载力有利,但节点延性及耗能能力降低,且刚度退化及强度衰减明显.在试验研究的基础上,建立了可考虑刚度退化的型钢再生混凝土柱-钢梁组合框架边节点四折线恢复力模型,研究结论可为该组合框架边节点的抗震设计提供技术参考.  相似文献   

10.
通过对一根钢管普通混凝土试件和一根钢管再生混凝土试件进行低周反复荷载试验,从破坏模式、滞回曲线、骨架曲线、刚度退化曲线分析试件的承载力、延性以及耗能能力。结果表明,钢管再生混凝土试件与钢管普通混凝土试件的破坏模式和受力性能基本相似,在相同的轴压比下,钢管再生混凝土试件与钢管普通混凝土试件一样,均具有良好的承载能力、延性性能以及耗能能力。  相似文献   

11.
X形配筋增强高强钢筋异形柱边节点抗震性能数值模拟   总被引:1,自引:1,他引:0  
为研究X形配筋增强高强钢筋混凝土异形柱边节点抗震性能,采用Abaqus有限元方法分别模拟不同轴压比、梁筋直径、混凝土强度、钢筋强度试件在低周往复作用下的受力过程。对比分析各试件的承载能力、变形能力、滞回性能和刚度退化。考察各参数对X形配筋增强高强钢筋混凝土异形柱边节点抗震性能的影响。结果表明:轴压比0.28下试件滞回性能最好;梁筋直径的增加可以延缓刚度退化,承载能力、变形能力增强,但滞回性能变差;600 MPa级高强钢筋与C60强度混凝土结合的试件及HRB 500高强钢筋与C50强度混凝土结合的试件抗震性能相对较好。  相似文献   

12.
方钢管混凝土柱-钢梁隔板贯通节点抗震性能试验   总被引:4,自引:0,他引:4  
为研究方铜管混凝土柱与钢梁连接的隔板贯通式节点的抗震性能,对4个足尺节点试件进行了低周反复荷载试验,分析了各试件的破坏过程及特征,并对节点的承栽力、延性、耗能能力和刚度退化等抗震性能指标进行了深入的研究与分析.结果表明,隔板贯通节点滞回曲线饱满,具有较强的耗能能力;铜梁翼缘与隔板的连接构造对节点的延性、耗能能力和刚度退化影响较大,倒角放坡型节点比侧板加强型节点具有更好的抗震性能;隔板的厚度、浇筑孔径和铜管的宽厚比对梁端破坏节点的抗震性能影响较小,但在试件中浇筑混凝土可以显著提高节点刚度,减小核心区的剪切变形,改善隔板贯通节点的抗震性能  相似文献   

13.
为研究方钢管再生混凝土柱的抗震性能,以再生粗骨料取代率为变化参数,设计制作了4根不同取代率的试件,对其进行拟静力试验,研究分析其破坏形态、滞回曲线、骨架曲线、延性、耗能能力、刚度退化等力学性能指标。研究结果表明:方钢管再生混凝土柱的破坏形态与方钢管普通混凝土柱相似,均为柱脚的鼓曲破坏;随着再生骨料取代率的增大,试件的极限承载力会有所减小,但减小幅度不大;再生粗骨料取代率对试件的延性、耗能性能、刚度退化则没有明显的影响。  相似文献   

14.
文章通过对5个粗骨料取代率为100%再生混凝土框架柱低周反复荷载下的抗震性能试验,研究各试件的破坏形式、滞回特性、延性性能、承载能力,分析轴压比对试件的抗震性能的影响。结果表明:在剪跨比、配箍率、混凝土强度都一致的条件下,随着轴压比的增加,试件的滞回曲线越来越扁平,耗能能力、延性及极限承载力不断下降。再生混凝土框架柱抗震性能的变化规律与普通混凝土柱基本相似,略低于普通混凝土柱构件,因而可以确定再生混凝土框架柱适用于低轴压结构。  相似文献   

15.
文章通过对2根薄壁圆钢管再生混凝土柱在定常轴力和水平往复荷载作用下的拟静力试验,研究其破坏形态和滞回特性,分析其承载力、刚度退化、延性及耗能能力等抗震性能。试验结果表明:试件破坏时柱根部200mm范围内钢管壁发生屈曲外鼓;低周反复荷载下滞回曲线较为饱满,延性系数在4.0左右,说明薄壁钢管再生混凝土柱具有良好的延性性能和耗能能力。  相似文献   

16.
以再生粗骨料取代率、混凝土强度为主要参数,完成了6个钢管再生混凝土柱试件的低周反复试验,研究了其破坏形态和滞回特性,分析其承载力、刚度退化、延性、耗能能力、破坏形态等抗震性能.结果表明:钢管再生混凝土柱具有良好的抗震性能;试件的耗能能力、延性、滞回特性随着再生粗骨料取代率、混凝土强度的改变而略有变化;考虑粘结滑移与否对试件的抗震性能影响很小;钢管再生混凝土柱极限承载力受再生粗骨料取代率的影响并不明显.最后,提出了基于Miner原理的改进损伤评估模型,通过对比表明该模型能较好地反映钢管再生混凝土柱的抗震损伤水平,与试验结果符合良好.  相似文献   

17.
为明确不同节点域强度H型钢柱梁节点试件的抗震性能,通过5组不同节点域强度H型钢柱梁节点试件的加载试验,从试件的滞回曲线、骨架曲线、承载能力、刚度退化及能量耗散系数等多方面开展研究。结果表明:随着节点域强度提升,试件的屈服强度和初始刚度提升,而变形能力递减。节点域与梁强度比Rpjb在0. 8~0. 95范围内时,试件的延性较好;同时,Rpjb≥0. 8的各试件的最大承载力值接近;建议Rpjb控制在0. 9左右。  相似文献   

18.
为研究在楼板组合作用下钢管混凝土节点的抗震性能,本文按照1:2比例制作了两个不同梁柱线刚度比的带楼板钢管混凝土柱钢梁节点试件。试验利用MTS液压加载系统对节点梁端施加循环往复荷载进行拟静力试验,并利用ABAQUS软件建立有限元模型进行数值模拟分析。通过试验与有限元模拟,得到了节点的滞回曲线、骨架曲线、延性系数、强度退化和刚度退化等性能参数。结果表明:两个节点试件在楼板组合作用下,滞回曲线饱满,节点表现出良好的抗震性能;在轴压比不变的情况下,随着梁柱线刚度比的增加,节点的延性、强度和刚度均有所提高;有限元模拟结果与试验结果吻合较好,验证了有限元模型的准确性,为参数分析提供了依据。  相似文献   

19.
为研究T形件螺栓连接卷边钢板组合截面PEC柱-钢梁组合框架结构的抗震机理,设计制作了一榀底部两层单跨组合框架1/2缩尺试件并进行水平低周往复荷载试验.基于试验现象和测试数据,从试件结构的滞回特性、水平抗侧刚度退化、节点性能、耗能能力与抗震延性、塑性机构发展进程与延性破坏模式等性能进行分析.研究结果显示:T形件螺栓连接增大了梁柱节点刚度,改善了结构的整体性,试件的初始抗侧刚度较大、极限承载力较高;T形件螺栓连接使得梁端塑性铰形成位置远离节点区,试件滞回曲线较为饱满,试验结束对应承载力未出现明显降低,且对应整体侧移角、位移延性系数和等效黏滞阻尼系数表明试件具有良好的抗倒塌能力、抗震延性与耗能能力;T形件螺栓连接PEC柱-钢梁组合框架试件塑性破坏机构发展进程为T形件端部梁截面和PEC柱脚相继形成塑性铰,实现了框架结构的理想延性耗能模式.  相似文献   

20.
钢梁贯穿式方钢管砼梁柱节点滞回性能分析   总被引:1,自引:0,他引:1  
针对以往钢管混凝土梁柱节点受力性能及应用中的缺陷,提出钢梁贯穿节点.通过ANYSYS有限元软件分析其单调荷载作用下的内力传递机理,循环荷载作用下的滞回性能、延性及耗能性能.结果表明:穿心节点有效地降低了钢管壁所受应力,提高了节点刚度,能实现"强柱弱梁"和塑性铰形成于节点区外的抗震设计理念;滞回曲线均为饱满的梭形,强度和刚度退化不明显.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号