首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
接触角是常见的自然现象,是液体对固体表面浸润的结果,通过测量接触角可以判断固体表面亲疏液体的性质。从热力学自由能理论出发,采用基于化学势的多相流晶格Boltzmann方法研究表面上微小液滴形变中的接触角变化。通过设置不同的化学势来改变固体表面的亲疏液体性质,模拟计算中既有落在固体表面之上的液滴,也包括悬挂在固体表面下方的液滴。在忽略重力作用的情况下,模拟得到的接触角与球冠法的理论预期一致,并且液滴的接触角可以通过表面化学势线性调节。在考虑重力作用的情况下,虽然不同大小的液滴发生了明显的不同程度的形变,但是模拟计算所得的接触角保持不变,验证了微观接触角与重力无关的理论。  相似文献   

2.
液滴在表面上的接触角是表征材料表面性能的重要参数,在流体力学、表面化学、医学等学科中具有重要应用。高精度的接触角测量与三相接触点的准确定位和拟合曲线的吻合程度密不可分,因此提出一种新的接触角测量方法。首先,基于Harris角点检测算法实现液滴三相接触点的自动检测,通过角点间的距离进行筛选,在筛选出角点的基础上进行亚像素角点检测,得到精确的三相接触点的位置。其次,针对多项式曲线拟合疏水和超疏水液滴轮廓不准确的问题,使用对数螺线和阿基米德螺线对液滴轮廓进行拟合,并求出拟合曲线在三相接触点处的切线,得到准确的接触角测量值。最后,对多幅液滴图片进行测量验证,结果表明本方法不仅适用于测量静态接触角,还适用于测量动态接触角,且接触角自动测量结果与电子量角器测量结果基本一致。  相似文献   

3.
李健  费潇  王腊梅  赵珂  金卫凤 《科学技术与工程》2021,21(24):10134-10139
为了实现超疏表面上液滴的接触角测量,提出了基于液滴局部轮廓的接触角测量方法,通过超疏水表面的接触角测量实验对所提出的测量方法进行了验证。结果表明:基于液滴局部轮廓的接触角测量方法能有效稳定地测量出超疏水表面上的液滴接触角值;实施提出的接触角测量方法时需要测量点均布在液滴高度的2/5范围内的液滴轮廓上;基于液滴局部轮廓的接触角测量方法中接触点的选择误差对接触角测量结果的影响是可控的。可见基于液滴局部轮廓的接触角测量方法可用于表征表面的润湿性能。  相似文献   

4.
液滴撞击润湿性不同的表面会产生不同的动态行为,数值模拟是研究该现象的一种有效方法。采用基于化学势的晶格Boltzmann方法,通过调整接触角来改变固体表面的润湿性,对液滴撞击单一接触角的疏水表面以及接触角分布不同的疏水表面所产生的动态行为进行模拟和分析。当给疏水表面施加单一接触角时,液滴的弹跳高度随表面接触角的增大而增大,并且当接触角增大到160°时会产生二次弹跳现象,大于170°时产生多次弹跳现象;当给疏水表面施加分布不同的接触角时,根据表面接触角设置方法的不同,所产生的液滴弹跳现象会有相应的差异。结果表明,当液滴撞击2种接触角交界处时,液滴总是向接触角小的一方侧向弹跳,其弹跳高度和距离取决于2种接触角的差值,并给出了该差值分别与弹跳高度和距离的基本关系。这种特性对实现有效控制液滴动态行为十分有帮助,可广泛应用于自清洁、喷墨打印等领域。  相似文献   

5.
微流控技术可为球形炸药颗粒的制备提供新的方法,但球形液滴的形成过程尚待深入研究。以奥克托今(HMX)为研究对象,基于COMSOL Multiphysics 5.5的两相流模块建立HMX球形液滴生成模型,采用数值模拟方法分别模拟出入口流速、接触角等因素对HMX液滴生成过程、大小以及生成时间的影响。结果表明:出入口流速的变化不仅影响生成液滴的大小还影响液滴的生成速率;接触角的变化主要影响生成液滴的大小。通过配置相应的高速摄影系统观察微流控芯片中HMX液滴的生成过程,发现理论模拟结果与实验结果的规律吻合较好,表明建模方法可以很好地反映实验过程。HMX液滴形成过程的模拟研究结果可为球形炸药的制备提供理论支撑。  相似文献   

6.
接触角测试的量高法的适用范围   总被引:2,自引:2,他引:0  
李健 《科学技术与工程》2013,13(16):4486-4490
量高法是接触角测试的一种简便的测试方法,在工程和研究中得到广泛应用。该方法基于液滴的球形假设,决定其仅有有限的适用范围。通过数值模拟的方法研究量高法所引起的接触角偏差,从而考察量高法的适用范围并给出接触角修正的方法。研究发现:采用量高法计算的接触角与真实接触角有很大的偏差,这种偏差在超疏水表面上的接触角测量中尤为明显,可达20°;偏差范围决定于液滴的性质、表面的润湿性能和液滴的体积,液体表面张力小、接触角大和液滴体积大将导致大的偏差。在超疏水或超疏油表面研究中,为精确表征表面的润湿性能,需要对量高法进行偏差修正,提出了一种用于偏差修正的方法,通过该方法可精确确定出真实接触角。  相似文献   

7.
为了研究液滴在燃煤细颗粒表面的长大动力学特性,实验测量了水在不同燃煤细颗粒表面的接触角θ,考虑液滴在燃煤细颗粒表面长大的2种作用机制:细颗粒表面水汽的直接扩散凝结和颗粒表面吸附水扩散凝结,对燃煤细颗粒表面单液滴的长大动力学进行了研究.数值讨论了燃煤细颗粒粒径、蒸汽过饱和度、蒸汽温度、液滴半径和颗粒表面润湿性对单液滴在燃煤细颗粒表面长大速率的影响.结果表明:当颗粒粒径小于0.5μm时,液滴的长大速率随着燃煤细颗粒的增大迅速增大,当粒径大于0.5μm时,长大速率随着粒径的增大缓慢增长;液滴的长大速率随着过饱和度上升呈指数倍增长,但是随着蒸汽温度的上升而呈现下降的趋势;液滴的长大速率开始随着液滴半径的增大而急剧下降,长大到某一半径后下降的趋势变缓;当0≤cosθ≤0.8时,长大速率随着润湿角余弦值的增大而平缓地增大,当0.8≤cosθ≤1时,长大速率会随着润湿角余弦值的增大而急剧增大.  相似文献   

8.
T-型微流控通道中微液滴形成机制的CFD模拟   总被引:1,自引:0,他引:1  
采用计算流体力学(CFD)方法,对宽型微米级T-型微通道中微液滴形成机制进行了数值模拟。通过与已有文献实验结果的对比,证明了数值模拟的准确性;发现液滴在微通道中的形成过程可分为液滴形成和成长、液滴与分散相的脱离和液滴从通道壁的脱落3个阶段。首次系统分析了通道壁的润湿性对液滴形成的影响,发现当分散相在通道壁上的接触角小于90°时,才能形成微液滴;通道壁越疏分散相,微液滴越容易形成,并且从通道壁上脱离的时间也越短。通过分别改变连续相的黏度、流速以及两相间界面张力,研究了毛细准数Ca对微液滴的形成机制及液滴大小的影响。发现在T-型通道中能形成液滴的范围内,Ca越大,则形成的微液滴体积越小;当Ca大于0.067时,微液滴的直径与连续相Ca的倒数之间存在明显的线性关系。  相似文献   

9.
开发了一种通过对基板施加超声振动实现对液滴本征接触角测量的新方法.通过此方法发现无论液滴是否润湿基板,当对基板施加超声振动时前进接触角显著减少,停止超声振动时接触角迅速增加.使用超声振动之前获得的前进接触角和停止超声后获得的后退接触角的值来推测液滴的本征接触角,测得水在特氟龙表面的本征接触角为(96±2)°,乙二醇在特氟龙板上的本征接触角为(75±1)°.  相似文献   

10.
提出一种基于子图像邻域梯度信息度量的边界提取算法,通过构造邻域信息映射矩阵并利用矩阵梯度信息度量值提取图像目标的有效边界,详细阐述了应用本文算法实现劣质液滴图像的边界检测及接触角测量的方法与步骤。实验结果表明:本文算法能有效地提取劣质液滴图像的目标边界,完成液滴接触角的自动计算,接触角计算结果与人工计算结果基本一致。  相似文献   

11.
液滴在表面上的接触角是衡量表面润湿性能的一个重要指标,近年来在超疏水表面研究领域得到广泛应用。目前接触角测试主要采用座滴法在获取液滴数字图片的基础上对液滴轮廓进行直接测量或拟合得到;数字图片的离散性决定了接触角测试结果具有一定误差这一误差在液滴偏离球冠形状的情况下(例如:超疏水/油表面接触角测量)会变得较为严重。拟采用数值模拟分析方法研究由液滴数字图片决定的超疏水/油表面接触角测量误差随液滴参数和表面性能的变化规律。通过模拟发现,接触角测量误差随着接触角的增大而增大;采用大体积液滴进行测量会带来较大的接触角误差;而密度大或表面张力小的液体带来的误差较太。为实现接触角误差的控制,在采用小体积液滴的同时,可以通过悬滴法进行测试,此时误差可控制在仪器误差限范围之内。  相似文献   

12.
考虑到液滴在纤维上的附着形态是滤网运行压降的重要影响因素,为探究油颗粒在纤维上的附着形貌,采用数学模型和数值模拟方法,对液滴附着形貌的几何特征参数进行预测计算.基于平面弯曲思路提出了蛤壳状数学模型,并采用有限元软件对蛤壳状数学模型和现有的梭状数学模型的精度进行验证.通过有限元软件和数学模型计算获得蛤壳状和梭状2种附着形貌的分界以及无量纲液滴体积和接触角对附着形貌几何特征的影响.结果表明,随着接触角的增加,液滴在一定直径的纤维上形成梭状所需的体积呈指数增加;在接触角θ10°和无量纲液滴体积不大于3时,蛤壳状数学模型的计算误差小于10%;接触角减小时润湿长度和自由表面增加,纤维和油颗粒的碰撞和接触几率增加;无量纲体积越小的液滴演变成液桥或液膜的几率越小.  相似文献   

13.
针对喷雾冷却,应用VOF(volume of fluid)模型,使用静态接触角、实验动态接触角、Kistler模型和Blake模型4种方法来处理动态接触角,模拟了单个μm量级的液滴冲击未加热平板的流动情况,并分析了液滴参数对铺展的影响。结果发现:采用Blake模型模拟的结果与已有的实验结果符合得最好;模拟中根据铺展速度直接计算出并作为条件赋值的角度并不一定等于视在接触角;液滴自触壁起依次受惯性力、粘性力和表面张力主导;We数越大,最大铺展直径越大,惯性力起主导作用的时间越长,液滴达到最大铺展、发生回弹的时间越晚,液滴铺展的特征时间越小于液滴演化的特征时间;粘性力对小液滴所起的作用较大,表面张力对大液滴所起的作用较大;μm量级的液滴反弹并不剧烈,与mm量级的液滴有很大区别。  相似文献   

14.
提出了基于彩虹散射光吸收系数的液滴吸收率测量方法.采用基于Mie理论的改进算法进行数值模拟.研究表明,液滴的吸收性不改变彩虹光强波峰及对应频峰的位置,但改变彩虹光强强度,尤其对彩虹表面波结构及Airy结构影响较大,并因此降低了彩虹的可见度.计算发现液滴散射光吸收系数的最大值出现在彩虹区,并随液滴吸收率和粒径的增加稳定在彩虹最大波峰角位置,而且此处的吸收系数与吸收率之间有着线性关系.基于彩虹测量技术具有易检测、易标定的特点,因此有望发展为一种新的液滴吸收系数测量方法.  相似文献   

15.
通过引入“线张力”的概念,分别用力学和热力学的方法导出固体表面上液滴平衡时接触角应满足的条件,即对Young方程进行修正.并得到了液滴系统自由能随接触角变化的曲线,从理论上说明在理想固体表面上线张力可以造成液滴接触角的多值现象.结果表明,由液滴形变作用引起的线张力变化是影响接触角测量准确性的一个重要因素.对于深入认识线张力在液滴运动以及滴状冷凝传热过程中的作用有积极意义.  相似文献   

16.
采用计算流体动力学方法,基于液滴界面能量守恒原理建立了液化天然气饱和单液滴蒸发模型,以对不同的温差、相对速度及液滴粒径的液滴在同种蒸气中的蒸发过程进行模拟,并分析了吹拂效应的影响.结果表明:增大温差、相对速度及液滴粒径,均会使得液滴界面换热量增大;随着温差增大,温度边界层厚度及其比值逐渐增加,但考虑与未考虑液滴蒸发时液滴界面换热量之比呈现出分段变化特征,液滴的运动使得其分段点提前,且吹拂效应的影响增大;随着相对速度增加,吹拂效应对液滴蒸发的影响减弱,当相对速度大于18 m/s时,吹拂效应的影响可以忽略;随着液滴粒径增加,吹拂效应的影响基本保持不变.  相似文献   

17.
超重力旋转床中气液两相流动与传质过程的数值模拟   总被引:5,自引:0,他引:5  
文中采用基于颗粒轨道模型的欧拉-拉格朗日法对超重力旋转床中的气液两相流动与传质进行了数值模拟研究。在合理简化丝网填料结构和考虑液滴凝并与分散的基础上,分别利用SIMPLE算法和颗粒轨道模型计算了超重力旋转床中的气流场和液滴的运动轨迹,进而计算了液相的传质系数。数值模拟所得的液相传质系数与氮气解吸水中溶解氧实验结果符合良好,表明模型能够用于模拟旋转床中流体力学和分散相内的传质过程。计算分析表明,对超重力旋转床,在一定的转速下,液体和气体流量以及填料内径的变化对体积传质系数有重要影响。  相似文献   

18.
基于Hertz接触理论,在考虑运行工况引起的接触角变化扣离心力的基础上,通过受力分析,建立了滚珠丝杠副的力平衡方程并提出一种计算滚珠丝杠副运转过程中接触变形的方法.以某型号滚珠丝杠副为例,分析了轴向载荷、丝杠转速、接触角和螺旋角对滚珠丝杠副接触特性的影响.分析结果表明,转速增大时丝杠侧的接触变形减小,螺母侧的接触变形增大,两侧接触角的差值增大,当转速增大到一定程度时,螺母侧的接触变形会大于丝杠侧;载荷越小,运转过程中接触角的变化越大,对接触变形的影响也较大;接触变形随接触角和螺旋角的增大而减小.  相似文献   

19.
在相位测量轮廓术中,探测器的非线性响应是影响测量精度的重要因素.对该误差进行了理论分析,结果表明,通过增加相移帧数可以有效地减小非线性效应的影响,而且计算机模拟和实测证实:在基于数字投影设备的相位测量轮廓术中,当相移帧数为条纹周期的1/2时,非线性效应的影响可被很好地抑制.该结果可为实际应用中合理地选择相移算法提供理论依据.  相似文献   

20.
针对钢液中液态夹杂与固态夹杂碰撞聚合的现象,采用水模型实验模拟了液态夹杂去除固态夹杂的行为.实验结果表明:其与液滴去除夹杂的机理类似,流体内液滴与固粒的碰撞存在3种形式:惯性碰撞、截留捕获和尾流捕获.通过理论公式计算了单独的惯性碰撞捕获效率及同时考虑惯性碰撞和截留的捕获效率,发现二者的趋势基本一致,尤其当液滴直径较大时,二者曲线大致重合,因此,可以得出惯性捕获占据主导地位的结论.这与实验中观察到的液滴与固粒聚合大多数都是惯性碰撞相吻合.对实验数据进行了分析计算,得到了实验中液滴捕获固粒的捕获效率,发现所得曲线与理论计算捕获效率值相比,有一定差异,但是趋势基本一致.这是因为湍动程度较低,不同直径的捕获效率相对较为均匀,没有理论计算曲线那样陡峭.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号