首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The small heat shock proteins and their clients   总被引:11,自引:0,他引:11  
Small heat shock proteins are ubiquitous proteins found throughout all kingdoms. One of the most notable features is their large oligomeric structures with conserved structural organization. It is well documented that small heat shock proteins can capture unfolding proteins to form stable complexes and prevent their irreversible aggregation. In addition, small heat shock proteins coaggregate with aggregation-prone proteins for subsequent, efficient disaggregation of the protein aggregates. The release of substrate proteins from the transient reservoirs, i.e. complexes and aggregates with small heat shock proteins, and their refolding require cooperation with ATP-dependent chaperone systems. The amphitropic small heat shock proteins were shown to associate with membranes, although they do not contain transmembrane domains or signal sequences. Recent studies indicate that small heat shock proteins play an important role in membrane quality control and thereby potentially contribute to the maintenance of membrane integrity especially under stress conditions. Received 11 July 2006; received after revision 4 October 2006; accepted 10 November 2006  相似文献   

4.
Heat shock protein gene expression during Xenopus development   总被引:2,自引:0,他引:2  
Stress-induced heat shock protein gene expression is developmentally regulated during early embryogen esis of the frog, Xenopus laevis. For example, a number of heat shock protein genes, such as hsp70, hsp90, and ubiquitin are not heat-inducible until after the midblastula stage of embryogenesis. Furthermore, the family of small heat shock protein genes, hsp30, are differentially expressed after the midblastula stage as well as being regulated at the level of mRNA stability. Many of these stress proteins are also synthesized constitutively during oogenesis and embryogenesis during which they may act as molecular chaperones as well as being involved in sequestering proteins in an inactive state until required by the developing embryo. Furthermore the induction of these stress protein genes has been correlated with enhanced thermoresistance. During stressful conditions heat shock proteins probably prevent aggregation or misfolding of damaged protei ns within the embryo.  相似文献   

5.
Major alterations in genetic activity have been observed in every organism after exposure to abnormally high temperatures. This phenomenon, called the heat shock response, was discovered in the fruit flyDrosophila. Studies with this organism led to the discovery of the heat shock proteins, whose genes were among the first eukaryotic genes to be cloned. Several of the most important aspects of the regulation of the heat shock response and of the functions of the heat shock proteins have been unraveled inDrosophila.  相似文献   

6.
The widespread distribution of insects over many ecological niches is a testimony to their evolutionary success. The colonization of environments at high latitudes or altitudes required the evolution of biochemical strategies that reduced the impact of cold or freezing stress. This review focuses on our current interests in some of the genes and proteins involved in low temperature survival in insects. Although the most widespread form of protection is the synthesis of low molecular weight polyol cryoprotectants, proteins with intrinsic protective properties, such as the thermal hysteresis or antifreeze proteins are also important. These have been cloned and characterized in certain moths and beetles. Molecular techniques allowing the isolation of genes differentially regulated by low temperatures have revealed that heat shock proteins, cold stress proteins, membrane protectants, as well as ice nucleators and other less well characterized proteins likely also play a role in cold hardiness. Received 10 June 2008; received after revision 17 November 2008; accepted 18 November 2008  相似文献   

7.
A mild increase in temperature that does not exert an effect on tolerance development or synthesis of heat shock proteins (Hsps) in control cells can stimulate these processes when applied to cells that have previously been heat shocked. To study the underlying mechanism of this effect, H9c2 cells were stably transfected with the gene encoding firefly luciferase (Luc). Heat-shock-induced inactivation of Luc and its subsequent reactivation is frequently used as a model for cellular protein denaturation and renaturation. Luc reactivation was determined following a damaging heat shock (43 or 44 degrees C for 30 min) in cells that were subsequently exposed to either control temperatures (37 degrees C) or various mild hyperthermic conditions (from 38.5 to 41.5 degrees C for 1 h). To prevent changes in Luc activity consequent to new synthesis of Luc, Luc reactivation was monitored in the presence of cycloheximide, an inhibitor of protein synthesis. The results showed that reactivation of Luc was inhibited when heat-treated cells were post-treated under mild hyperthermic conditions. The observed increase in Hsp synthesis under mild hyperthermic post-heat shock conditions therefore appears to be the result of an increase in the period during which denatured proteins are present. In addition, we studied Luc reactivation in the absence of protein synthesis inhibitors. This condition led to much higher Luc activity. By estimating half-life times of Luc, the contribution of new Luc synthesis in this recovery could be determined, and only partially explained the observed increase in Luc reactivation after heat shock. Thus the synthesis of other proteins must be important for the renaturation of heat-damaged proteins.  相似文献   

8.
9.
Heat shock genes are found in all organisms, and synthesis of heat shock proteins is induced by various stressors in nearly all the cells forming these organisms. However, a particular situation is noticed for hsp70 genes in mouse embryos at the beginning of their development. First, spontaneous expression of hsp70 is observed at the onset of zygotic genome activity. Second, inducible expression is delayed until morula or early blastocyst stages. A better understanding of both these points depends on a more careful analysis of hsp70 expression in relation to their major regulators, the heat shock factors. In this review, we will see how the development of the preimplanta tion embryo highlights the complexity of heat shock gene regulation involving trans-cis interactions and the cellular and nuclear environment.  相似文献   

10.
Ehrlich carcinoma and EL-4 thymoma ascites cells were subjected in vitro to heat shock, ATP depletion, oxidative stress, Ca2+ overlading and iodoacetamide treatment. After the transient stresses, Triton (X-100)-insoluble TIS) fractions were isolated from the cells and analysed by electrophoresis and immunoblotting. All stresses used caused rapid aggregation of cell proteins. This was manifested in a signficant rise in protein content in the TIS fractions. The protein increase was mostly due to and increase in the insolubility of actin, 57 kDa protein of intermediate filaments, 70 kDa heat shock protein (HSP 70), and some specific proteins whose insolubilization was a characteristic sign for each type of cell injury. Different survival rates in the cell lines after either stress corrlated well with differences in their TIS protein accretion. Possible mechanisms for stress-induced protein aggregation and its relationship with cell viability are suggested.  相似文献   

11.
12.
The effect of heat shock on protein synthesis in three relatedDrosophila species belonging to theobscura group was analyzed on SDS-acrylamide gels. Four major heat shock proteins (hsps) were found in these species, in which synthesis reaches a maximum at 34°C. Although the higher molecular weight proteins are conserved, differences in size were found for the small hsps in these species. By means of in situ hybridization usingD. melanogaster probes for the small hsp genes, it was inferred that the small hsp genes of theobscura group species are clustered at the 27A locus in all three species.  相似文献   

13.
Heat shock effects on cell cycle progression   总被引:6,自引:0,他引:6  
  相似文献   

14.
Eukaryotic cells have a highly conserved response to an increase in temperature, termed the heat shock response. Recent research has revealed multiple roles for various sphingolipids in the heat shock responses of both yeast and mammalian cells. Heat stressed or shocked yeast and mammalian cells have an acute activation of serine palmitoyltransferase, resulting in the de novo biosynthesis of sphingolipids. Also, both mammalian and yeast cells were shown to increase ceramide levels upon heat stress or shock. In yeast cells, several functions have emerged for the de novo produced sphingoid bases in terms of the heat stress response. These functions include a role in accumulation of trehalose, a role in the heat-induced transient G0/G1 cell cycle arrest and phytosphingosine activation of a ubiquitin protein degradation pathway. However, in mammalian systems, ceramides have been demonstrated as bioactive lipids. Ceramides produced in response to heat shock were demonstrated to induce the production of c-jun, leading to apoptosis, and to be upstream of dephosphorylation of serine-rich proteins. Increasingly, sphingolipids are emerging as bioactive signaling molecules involved in numerous aspects of the eukaryotic heat shock response.  相似文献   

15.
DnaJ/Hsp40 (heat shock protein 40) proteins have been preserved throughout evolution and are important for protein translation, folding, unfolding, translocation, and degradation, primarily by stimulating the ATPase activity of chaperone proteins, Hsp70s. Because the ATP hydrolysis is essential for the activity of Hsp70s, DnaJ/Hsp40 proteins actually determine the activity of Hsp70s by stabilizing their interaction with substrate proteins. DnaJ/Hsp40 proteins all contain the J domain through which they bind to Hsp70s and can be categorized into three groups, depending on the presence of other domains. Six DnaJ homologs have been identified in Escherichia coli and 22 in Saccharomyces cerevisiae. Genome-wide analysis has revealed 41 DnaJ/Hsp40 family members (or putative members) in humans. While 34 contain the typical J domains, 7 bear partially conserved J-like domains, but are still suggested to function as DnaJ/ Hsp40 proteins. DnaJA2b, DnaJB1b, DnaJC2, DnaJC20, and DnaJC21 are named for the first time in this review; all other human DnaJ proteins were dubbed according to their gene names, e.g. DnaJA1 is the human protein named after its gene DNAJA1. This review highlights the progress in studying the domains in DnaJ/Hsp40 proteins, introduces the mechanisms by which they interact with Hsp70s, and stresses their functional diversity. Received 27 April 2006; received after revision 5 June 2006; accepted 19 July 2006  相似文献   

16.
Cellular responses to mild heat stress   总被引:12,自引:0,他引:12  
Since its discovery in 1962 by Ritossa, the heat shock response has been extensively studied by a number of investigators to understand the molecular mechanism underlying the cellular response to heat stress. The most well characterized heat shock response is induction of the heat shock proteins that function as molecular chaperones and exert cell cycle regulatory and anti-apoptotic activities. While most investigators have focused their studies on the toxic effects of heat stress in organisms such as severe heat stress-induced cell cycle arrest and apoptosis, the cellular response to fever-ranged mild heat stress has been rather underestimated. However, the cellular response to mild heat stress is likely to be more important in a physiological sense than that to severe heat stress because the body temperature of homeothermic animals increases by only 1–2°C during febrile diseases. Here we provide information that mild heat stress does have some beneficial role in organisms via positively regulating cell proliferation and differentiation, and immune response in mammalian cells.Received 14 May 2004; received after revision 2 August 2004; accepted 16 August 2004  相似文献   

17.
Rowbury RJ 《Science progress》2003,86(PT 1-2):139-155
Biological thermometers are cellular components or structures which sense increasing temperatures, interaction of the thermometer and the thermal stress bringing about the switching-on of inducible responses, with gradually enhanced levels of response induction following gradually increasing temperatures. In enterobacteria, for studies of such thermometers, generally induction of heat shock protein (HSP) synthesis has been examined, with experimental studies aiming to establish (often indirectly) how the temperature changes which initiate HSP synthesis are sensed; numerous other processes and responses show graded induction as temperature is increased, and how the temperature changes which induce these are sensed is also of interest. Several classes of intracellular component and structure have been proposed as enterobacterial thermometers, with the ribosome and the DnaK chaperone being the most favoured, although for many of the proposed intracellular thermometers, most of the evidence for their functioning in this way is indirect. In contrast to the above, the studies reviewed here firmly establish that for four distinct stress responses, which are switched-on gradually as temperature increases, temperature changes are sensed by extracellular components (extracellular sensing components, ESCs) i.e. there is firm and direct evidence for the occurrence of extracellular thermometers. All four thermometers described here are proteins, which appear to be distinct and different from each other, and on sensing thermal stress are activated by it to four distinct extracellular induction components (EICs), which interact with receptors on the surface of organisms to induce the appropriate responses. It is predicted that many other temperature-induced processes, including the synthesis of HSPs, will be switched-on following the activation of similar extracellular thermometers by thermal stimuli.  相似文献   

18.
Protein misfolding and aggregation as a consequence of impaired protein homeostasis (proteostasis) not only characterizes numerous age-related diseases but also the aging process itself. Functionally related to the aging process are, among others, ribosomal proteins, suggesting an intimate link between proteostasis and aging. We determined by iTRAQ quantitative proteomic analysis in C. elegans how the proteome changes with age and in response to heat shock. Levels of ribosomal proteins and mitochondrial chaperones were decreased in aged animals, supporting the notion that proteostasis is altered during aging. Mitochondrial enzymes of the tricarboxylic acid cycle and the electron transport chain were also reduced, consistent with an age-associated energy impairment. Moreover, we observed an age-associated decline in the heat shock response. In order to determine how protein synthesis is altered in aging and in response to heat shock, we complemented our global analysis by determining the de novo proteome. For that, we established a novel method that enables both the visualization and identification of de novo synthesized proteins, by incorporating the non-canonical methionine analogue, azidohomoalanine (AHA), into the nascent polypeptides, followed by reacting the azide group of AHA by ‘click chemistry’ with an alkyne-labeled tag. Our analysis of AHA-tagged peptides demonstrated that the decreased abundance of, for example, ribosomal proteins in aged animals is not solely due to degradation but also reflects a relative decrease in their synthesis. Interestingly, although the net rate of protein synthesis is reduced in aged animals, our analyses indicate that the synthesis of certain proteins such as the vitellogenins increases with age.  相似文献   

19.
The heat shock (HS) response is a general homeostatic mechanism that protects cells and the entire organism from the deleterious effects of environmental stresses. It has been demonstrated that heat shock proteins (HSP) play major roles in many cellular processes, and have a unique role in several areas of cell biology, from chronic degenerative diseases to immunology, from cancer research to interaction between host and parasites. This review deals with thehsp70 gene family and with its protein product, hsp70, as an antigen when pathogens infect humans. Members of HSP have been shown to be major antigens of many pathogenic organisms when they experience a major temperature shift upwards at the onset of infection and become targets for host B and T cells.  相似文献   

20.
Mammalian heat shock protein families. Expression and functions.   总被引:2,自引:0,他引:2  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号