首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
石墨烯具有独特的二维纳米结构、高比表面积和优异的电化学性能,而且变形后仍保持器件的原始性能。分析了石墨烯柔性超级电容器的工作原理,研究了以石墨烯为电极材料的柔性超级电容器的变形特性,其变形类型可由小角度弯曲、卷曲和拉伸扩展至任意静态变形,甚至动态变形。最后对石墨烯柔性电容器在便携式电子器件中的应用进行了展望。  相似文献   

2.
便携电子产品的快速发展以及可再生能源系统的日益扩大,意味着储电系统将在人类社会中扮演着越来越重要的作用.近年来,新一代的超级电容器在材料合成、器件的设计组装以及多功能器件的设计等方面取得了许多重大突破.因此,本文将从新材料的合成、新设备的设计组装以及多功能器件的研发等方面对超级电容器的最新研究进展进行总结.首先,对不同结构的超级电容器及其性能进行详细地讨论,包括三电极(也称半电池)装置、两电极超级电容器、柔性固态超级电容器、纤维超级电容器以及微型(平面)超级电容器等.通过对文献的综合分析,突出介绍了超级电容器的设计原则;其次,对一些新兴电极材料的研发及其储电性能进行了讨论,包括碳材料、双金属氧化物(NiCo_2O_4, Ni_3V_2O_8, Co_3V_2O_8等)、过渡金属硫化物/硒化物/磷化物等正极材料以及VN, Fe_2O_3等负极材料;最后,对下一代的多功能超级电容器,包括自愈合超级电容器、自充电超级电容器、全方位-自适应-自充电超级电容器等器件的研究进展进行总结,概括这一新兴技术领域的未来发展趋势及其关键技术挑战.  相似文献   

3.
《科学通报》2011,56(19):1584-1584
热电转换是一种新兴的清洁能源技术, 可实现热能和电能的直接转换, 提高能源的使用效率, 降低石化能源的消费比重, 减少二氧化碳的排放, 达到保护环境的目的,相关研究在国际上引起了广泛关注. 由于材料中电和热的输运强烈地耦合在一起, 难以独立调控, 热电材料的性能优值长期徘徊在1.0左右, 仅在室温制冷等若干特殊领域获得了小规模应用. 有效提高热电材料性能已成为热电转换技术工业应用与热电材料科学领域亟待解决的热点与难点.科学家G. Slack提出理想化热电材料应该具有“声子玻璃-电子晶体”的特征, 相关研究成为近年来热电材料领域最重要和最具有代表意义的方向. 一些具有孔洞结构的笼状化合物, 如方钴矿材料被认为可能有“声子玻璃-电子晶体”特性, 而得到了广泛的关注; 但该笼状化合物中与输运性能相关的诸多物理机制, 以及与“声子玻璃-电子晶体”特征之间的关联尚不清楚, 限制了对该类材料的进一步认识和性能优化.  相似文献   

4.
封面说明     
正超级电容器作为新型绿色环保产品,因其比容量大、功率密度高、循环寿命长和对环境无污染等特点而备受人们的关注.超级电容器能提供高于传统电容器的能量密度,其相比于二次电池具有更加优异的功率密度和循环寿命.因此,超级电容器有望应用于移动通讯、电动汽车、微电子器件等领域,具有广阔的应用前景.在  相似文献   

5.
黄士飞  帖炟  佟琦  赵玉峰 《自然杂志》2017,39(4):265-282
基于超级电容的混合储能器件(HESDs)是一种结合了两种储能形式——传统双电层电容与赝电容相结合,或者超级电容器和二次电池相结合——的新型储能器件,主要包括非对称超级电容器(ASCs)和电池电容器(BSCs)两大类。相比而言,混合储能器件不仅具有传统超级电容器的高功率密度、优良的长循环稳定性和安全性的特点,而且具有可与二次电池相媲美的能量密度,在未来能量储存应用领域中有望成为多功能电子设备、电动/混动车辆等的理想的终级动力源。针对不同种类超级电容器的电极材料储能行为及其相互联系、电解液的发展、电极材料合成与研究现状、全电池的构筑及其性能等方面进行了详细、系统的综述,并对混合储能器件未来的发展前景和趋势以及所面临的挑战进行了展望。  相似文献   

6.
热电材料能够实现热能和电能之间的直接相互转换,被视为具有广泛应用前景的清洁能源材料。热电材料的规模化应用主要受制于其较低的能量转换效率,因此提高材料的热电性能仍然是当前研究的重心。优化电输运性能和降低晶格热导率是提升热电性能的两条主要途径。相较于强关联的电导率和塞贝克系数,晶格热导率相对可以独立调控,因此如何获得低晶格热导率成为热电材料研究的热点。文章综述了利用晶体缺陷包括点缺陷、线缺陷、面缺陷、填隙原子等降低晶格热导率的方法及其声子散射机制,并对低维、低声速、低比热等热电材料的研究进展及其具有本征低晶格热导率的机制进行了介绍。  相似文献   

7.
热电材料能够实现热能和电能之间的直接相互转换,被视为具有广泛应用前景的清洁能源材料。热电材料的规模化应用主要受制于其较低的能量转换效率,因此提高材料的热电性能仍然是当前研究的重心。优化电输运性能和降低晶格热导率是提升热电性能的两条主要途径。相较于强关联的电导率和塞贝克系数,晶格热导率相对可以独立调控,因此如何获得低晶格热导率成为热电材料研究的热点。文章综述了利用晶体缺陷包括点缺陷、线缺陷、面缺陷、填隙原子等降低晶格热导率的方法及其声子散射机制,并对低维、低声速、低比热等热电材料的研究进展及其具有本征低晶格热导率的机制进行了介绍。  相似文献   

8.
柔性固态超级电容器作为一种新型能量存储器件,与传统平行板电容器相比可以达到更高的能量密度,相比普通电池则具有更大的功率密度和循环使用寿命,展示出良好的电化学性能,并具有高功率密度和循环稳定性好等优点,因而受到越来越多的关注,在可穿戴设备、柔性电子器件等诸多领域有着广泛的应用.目前,柔性电极材料的选取与制备是柔性超级电容器研究中十分活跃的方向,其中,碳基电极因为具有良好的电导性能、循环稳定性、高功率密度等特点,被国内外学术界广泛认可.本文提出了一种高效、简便制备碳基电极的方法,得到多孔富氮纳米片结构的碳电极,并对不同实验条件下的碳化电极样品做了全面的表征分析与性能测试,得到了较为理想的柔性碳化电极样品,其质量比电容达26 F/g,面积比电容达226 mF/cm2,等效串联阻抗仅为4?,具有很好的电化学性能.  相似文献   

9.
热电材料能够直接实现热能与电能的相互转换,是重要的新型环保能源转换材料之一.无机半导体材料是当前性能最好的热电材料,然而由于资源、性能及价格的局限而难以实现大规模工业化应用.因此,发展新型高性能热电材料已成为当前重要研究领域.导电高分子(CPs)作为一种潜在的热电材料,其研究已有三十余年,然而在2000年之前,因其性能不佳而未引起高度关注.2008年,聚3,4-二氧乙撑噻吩(PEDOT)热电优值(ZT)首次被报道超过10~(-3),为发展高性能有机热电材料带来新的曙光.此后,大量新技术和方法应用于PEDOT热电性能的改善和提高.近十年来,PEDOT的ZT值迅速从10~(-4)提高到10~(-1),使PEDOT成为最有希望的有机热电材料之一.尽管PEDOT热电材料离实际工业化应用仍有较大差距(ZT1),但依然是未来有机热电材料中可能获得重大突破的p型有机热电材料.本文简要归纳了导电PEDOT作为热电材料的优势、发展历程、性能改善的方法及其未来发展趋势.  相似文献   

10.
超级电容器的现状及发展趋势   总被引:3,自引:0,他引:3       下载免费PDF全文
超级电容器作为一种新型绿色新能源存储器件,在众多行业或领域展示出巨大的应用潜力或前景。简要介绍超级电容器的原理、特点,并对其发展现状、面临的问题及发展趋势进行了分析。  相似文献   

11.
超级电容器电极材料研究新进展   总被引:3,自引:0,他引:3  
随着社会经济的发展,人们对绿色能源和生态环境越来越关注.超级电容器作为一种新型储能器件,日益受到重视.与目前广泛使用的各种储能器件相比,超级电容器电荷存储能力远高于物理电容器,充放电速度和效率又优于一次或二次电池.此外,超级电容器还具有对环境无污染、循环寿命长、使用温度范围宽、安全性高等特点.超级电容器与氢动力汽车、混合动力汽车和电动汽车的发展密切相关,与燃料电池、锂离子电池等能量供给器件相结合,能够满足启动、爬坡等条件下的瞬时高功率需求.  相似文献   

12.
超级电容器是近年来出现的一种新型储能器件,它与目前广泛使用的各种储能器件相比,其电荷存储能力远高于物理电容器,充放电速度和效率又优于二次电池.此外,超级电容器还具有对环境无污染、循环寿命长、  相似文献   

13.
<正>热电材料是可将热能与电能相互直接转换的绿色能源材料[1,2],其能量转换效率主要取决于材料与器件性能,不依赖于能量体系的大小,因而在微小热源的回收发电、局部"热点"的快速精确制冷等技术领域具有显著的优势,在环境温差原位发电、低品位分散式热源利用、电子器件/微系统芯片温控等领域具有重要的应用.在实际应用中,  相似文献   

14.
人类当前面临越来越突出的能源短缺和环境恶化两大难题,新能源的开发具有极其重要意义.超级电容器是实现能源存储与转换的一种新兴绿色储能器件,具有非常广阔的应用前景.电极材料是储能器件的关键部件,而比表面积、孔结构、电导率和表面性质是决定其电化学性能的4个关键因素,上述因素通常又依赖于其合成方法和条件.多孔碳材料具有成本低廉、比表面积与电导率高、微结构可控/表面易于功能化以及优越的化学稳定性和突出的离子可及性等特点,通过合成方法和条件的调控,设计合成的多孔碳作为储能材料使用时展现出高的能量密度与功率密度,以及优越的电化学循环稳定性能.本文首先介绍目前活性碳、碳气凝胶、碳纤维、介孔碳、碳纳米管和石墨烯等多种形态的碳材料的研究进展;然后结合本研究组的研究工作,对分级孔碳、多孔碳球、超微孔碳、功能化多孔碳以及多孔碳复合材料的设计合成及其在能源存储与转换领域中的应用研究状况进行总结;最后对其发展趋势作出适当的评述.  相似文献   

15.
刘灰礼  何颖  史迅  郭向欣  陈立东 《科学通报》2013,(25):2616-2621
热电转换技术利用半导体材料的塞贝克效应(Seebeck effect)和帕尔贴效应(Peltier effect)可实现热能与电能的直接相互转换,是一种清洁利用能源的有效方式.快离子导体一般应用于电池材料.本文论述了近期研究中采用快离子导体的基本特性来探索高性能热电材料的研究进展,详细介绍了快离子导体的两套亚点阵结构可有效优化材料的电热输运特性,从而实现热电材料的"横波阻尼效应";提出了"声子液体"新概念,为热电材料性能优化和新热电化合物的探索提供新的思路和方向.  相似文献   

16.
超级电容器具有高功率和长循环寿命的优点,但与锂离子电池相比,其能量密度通常较低.一些金属氧化物可以稳定高速地充电和放电,其行为类似于赝电容,原因在于发生在表面的可逆氧化还原反应.本工作研究了非晶态α-Nb_2O_5材料在LiPF_6基有机电解质中的电化学行为.在0.1 V(vs. Li/Li~+)低电位下,表现出可逆的Li~+嵌入/脱嵌行为,循环伏安测试曲线在多个循环周期中均显示出矩形形状,表现为典型的赝电容行为.这种特性使得以α-Nb_2O_5为负极材料和活性炭为正极材料的混合超级电容器可充电至4.5 V的高电压.由于超级电容器的能量密度为E=1/2CV~2,该混合超级电容器的能量密度可达178.5 Wh/kg(基于两个电极的活性物质质量).  相似文献   

17.
郭凯  骆军  赵景泰 《自然杂志》2015,37(3):175-187
热电材料是一种利用固体中载流子(电子和空穴)运动实现热能和电能直接相互转换的功能材料,在温差发电和便携式制冷等领域得到重要应用。目前,如何协调优化载流子和声子的输运性能,从而提高热电材料能量转换效率,使其在利用余热发电方面发挥更大应用价值是材料学家研究的主要目标。简要介绍了热电效应的基本原理,总结了热电材料发展中的诸多关键科学问题,从结构设计(原子结构、纳米结构以及微米结构)方面综述了近年来的主要研究成果,并强调了温差发电技术对解决当前环境污染和能源危机的重要意义。  相似文献   

18.
《科学通报》2021,66(27):3617-3630
电极的结构设计是影响其反应动力学与离子传质能力,进而影响电化学储能系统性能的重要因素之一.为了追求较好的电极动力学以及传质速率,三维有序石墨烯基电极已吸引越来越多的研究兴趣.与其他类型的三维石墨烯结构不同,通过定向冷冻法、等离子体增强化学气相沉积法、KOH辅助水热法等制备的三维垂直定向石墨烯(3DVAG)具有垂直开放通道以及低孔隙弯曲度,可以有效增强离子的输运和电子的传导,提高活性物质的负载,从而实现电极材料的高能量密度及倍率性能.本文对三维垂直定向石墨烯的制备方法及其在超级电容器中的应用进行了综述,并对其未来的发展前景进行了展望.  相似文献   

19.
据英国《新科学家》杂志报道,一种体积更小、速度更快的第二代笔记本电脑即将问世。这种第二代笔记本电脑的一个显著特点,就是使用了一种超级电容器,而这种超级电容器是应用一种新的化学工艺制造出来的。  相似文献   

20.
刘东锐  秦炳超  赵立东 《科学通报》2023,(21):2716-2718
<正>热电材料是一种利用内部载流子输运实现热能和电能直接相互转换的功能材料[1].其中,分别利用塞贝克效应和珀耳帖效应的温差发电和电子制冷是热电材料的两个主要应用.近年来,随着科学技术的进步和人民生活水平的逐渐提高,人们对制冷的需求量也在逐年增加.热电制冷技术具有无污染、灵活性、可靠性和轻量化等优势,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号