首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
运用射频磁控溅射技术在涤纶非织造面料表面进行溅射镀膜,采用金属和金属氧化物靶材,探讨工作气压对薄膜沉积速率的影响,寻求最佳的溅射工艺参数.用扫描电镜分析镀膜表面微观结构,并测量薄膜厚度,结果表明,沉积速率从大到小分别是铜膜、不锈钢膜、不锈钢氧化膜、铜氧化膜和二氧化钛膜.金属膜在工作气压1.0~1.2 Pa达到最大的沉积速率;而金属氧化物膜在工作气压大约为2.8 Pa时薄膜沉积速率最大.镀膜后的织物外观因薄膜材料不同而呈现不同的颜色:铜膜为黄棕色,不锈钢膜为淡土黄色,铜氧化膜为黑色,不锈钢氧化膜为咖啡色,二氧化钛膜为淡黄色.  相似文献   

2.
ZnO:Al薄膜是一种N型宽带隙半导体材料,由于其大的载流子浓度和光学禁带宽度而表现出优良的光电特性.采用射频磁控溅射工艺,在室温下用氧化锌铝陶瓷靶(3wt%Al2O3)溅射沉积透明导电ZnO:Al薄膜,研究了各工艺参数,如氧流量、工作气压和射频功率对其光电特性的影响.实验结果表明:通氧量与靶材中含氧比例存在紧密联系,本实验在氧流量为0 sccm,射频功率400 W,Ar气为0.7 Pa,溅射时间为2.5 h的条件下,制备的ZAO薄膜最小方块电阻为65Ω/□,薄膜表面略显黄色.  相似文献   

3.
系统研究了射频和甚高频下沉积微晶硅薄膜时沉积参数对薄膜质量的影响,并优化了沉积参数.在相同的沉积条件下,甚高频沉积速度明显大于射频沉积速度,并且制备出的太阳能电池效率同样高于射频沉积.一般情况下,当沉积速率提高时,沉积薄膜中存在大量悬挂键和Si-2H键等缺陷,会大大降低材料的光电性能,同样也会降低太阳能电池的效率.在保证材料的光电性能的前提下提高沉积速度,沉积参数需要优化.在系列优化沉积参数后,微晶硅沉积速率达到0.75nm/s,在该沉积速率下,制备出的单结n—i—P结构的太阳能电池效率达到5.41%.  相似文献   

4.
采用射频磁控溅射技术制备了CdTe薄膜,使用探针式台阶仪、X射线衍射分析仪、紫外可见分光光度计、扫描电镜等表征了薄膜的厚度、结构、透过率、表面形貌等随溅射工艺的变化.结果表明:沉积速率随着功率的增加而增加,随气压的增加而呈线性减小;薄膜的结晶程度随气压增大而降低;功率从100 W增大到180 W,出现了CdTe薄膜晶相从立方相向六方相的转变;当沉积条件为纯氩气氛、气压0.3 Pa、功率100 W、室温时,沉积的CdTe薄膜结晶性能最好.  相似文献   

5.
利用13.56MHz射频等离子体增强化学气相沉积(RF—PEcVD)技术,高速沉积器件级质量的微晶硅(μc-Si:H)薄膜,研究了沉积压力、射频功率、电极间距、氢稀释度等参数对沉积速率的影响,通过选择适当的沉积参数.得到了沉积速率为0.3~0.4nm/s的μc-Si:H薄膜材料.薄膜的暗电导为10^-7S/cm量级,光电导与暗电导之比近似为2个量级.电导激活能为0.52eV左右.所得的μc-Si:H薄膜材料稳定性好,达到了器件级质量。  相似文献   

6.
利用等离子体增强化学气相沉积(PECVD)技术,以硅烷、硼烷、氢气为气源,在玻璃衬底上沉积氢化非晶硅薄膜.分析了气体的压强和射频功率两个参数对薄膜的沉积速率、折射率和晶化程度的影响.载流子的浓度随着射频功率的增加呈现先增加后下降的趋势;随着压强的增加,载流子的浓度出现先下降后增加的趋势;压强和射频功率对载流子迁移率的影响与对浓度的影响趋势相反.多次沉积薄膜后真空室的环境也对非晶硅薄膜的性质,如折射率、薄膜厚度、载流子浓度等造成影响.  相似文献   

7.
为了深入研究Ti掺杂ZnO薄膜的光电性能,采用射频磁控溅射技术在硅和玻璃基底上沉积Ti掺杂ZnO(TZO)薄膜.分别利用表面轮廓仪、X线衍射(XRD)、扫描电子显微镜(SEM)、UV-3600分光光度计和HMS-2000霍尔效应测试系统等表征手段分析溅射功率对TZO薄膜微观结构及光电性能的影响.结果表明:溅射功率对薄膜样品沉积速率的影响呈现先升后降的趋势,对电阻率的影响正好相反.当溅射功率为100W时,薄膜的沉积速率最大,为7.96nm/min,此时电阻率为最小的1.02×10-3Ω·cm;所有TZO薄膜在可见光波段的平均透过率均高于80%,为透明导电薄膜.Ti掺杂后的ZnO薄膜仍为六角纤锌矿结构,具有良好的c轴择优取向,溅射功率为100W时其微观结构均匀、平整、致密,表面形貌最好.  相似文献   

8.
为了探究沉积气压对ZrO2薄膜光学特性的影响规律,以玻璃和硅片为基底,利用射频磁控溅射的方法在不同沉积气压下制备ZrO2薄膜样品.通过分光光度计测定薄膜在可见光波段的透射光谱,利用椭圆偏振谱仪表征薄膜的折射率、消光系数、厚度等光学参量,利用原子力显微镜观测薄膜表面的微观结构等.结果表明:(1)薄膜的沉积速率随沉积气压的增大而减小,沉积气压为0.4 Pa时沉积速率最大,为0.033 nm/s,沉积气压为1.0 Pa时沉积速率最小,为0.011 nm/s;(2)当沉积气压为1.0 Pa时,200~1 000 nm波段薄膜的平均透射率和折射率均最高,分别为82.71%和2.35,表现出良好的透光性;(3)沉积气压对薄膜消光系数的影响较小;(4)不同沉积气压下制备薄膜的表面粗糙度也不同,沉积气压为1.0 Pa时薄膜的粗糙度最低,为5.5 nm,沉积气压为0.6 Pa时薄膜的粗糙度最高,为25.2 nm.  相似文献   

9.
利用等离子体增强化学气相沉积(PECVD)法沉积给定折射率的氮化硅薄膜,通过正交实验法对衬底温度、NH_3流量和射频功率3个对氮化硅薄膜沉积速率影响较大的工艺参数进行全局优化和调整,得到了氮化硅镀膜的最优工艺参数。  相似文献   

10.
采用射频磁控溅射法在Si(100)衬底上制备了AlN薄膜,通过控制工艺参数可以沉积出不同择优取向的AlN薄膜,各工艺参数中射频功率对其择优取向的影响最大.XRD表征了AlN薄膜的结构,进而选择出最优射频功率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号