首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 867 毫秒
1.
采用激光熔覆方法制备AlCoCrFeNiTi0.5高熵合金涂层,研究了激光工艺参数对涂层成形及组织性能的影响。结果表明:激光功率为3.5 kW,扫描速度为300 mm/min,光斑直径5 mm时,单道熔覆涂层表面成形性最好。熔覆层主要为BCC结构固溶体,并且有Al80Cr13Co7和Al95Fe4Cr复杂相析出,涂层平均硬度已达到989 Hv。  相似文献   

2.
在304不锈钢外圆表面使用激光熔覆镍基氧化锆金属陶瓷粉末,对激光工艺参数进行优化,制备工艺性能良好的熔覆层.研究了激光工艺参数对熔覆层宏观形貌、显微组织和硬度分布的影响.结果表明:激光功率为1.5 kW时为佳;随扫描速度增大,熔覆层的组织有细化的趋势;通过优化扫描速度,可得到显微硬度值较高,且沿熔覆层表面的垂直方向的硬度分布变化不大的熔覆涂层.  相似文献   

3.
应用IPG-500激光器对45号钢进行了激光熔覆,研究了工艺参数对熔覆层形貌的影响,采用极差分析找出影响熔覆层形貌的关键因素.在此基础上,提出采用灰色关联度分析不同参数组合下的熔覆层质量与理想的熔覆层质量之间的关联度,从而找出最佳的激光熔覆工艺参数组合.结果表明,激光功率与扫描速度是影响熔覆层形貌的主要因素,并且在激光功率为400W,扫描速度为7mm/s及送粉速率为0.7r/min的条件下,所获得的熔覆层质量最优,为激光熔覆工艺参数的选择提供理论支持.  相似文献   

4.
熔覆层性能难以满足特定的工艺要求,已成为限制激光熔覆发展的关键因素之一.鉴于此,在45号钢基体上制备出原位生成NbC增强YCF102熔覆层,并进行了热力学分析.通过XRD,SEM和EDS对其微观形貌及组成成分进行了分析,对其显微硬度及耐磨性进行了研究.结果表明:激光功率的改变对激光熔覆过程中原位反应的反应程度有显著影响,过大或者过小的激光功率均会对原位反应的发生起到抑制作用;YCF102熔覆层中原位生成的NbC颗粒的主要形态为四边形和花瓣形;当激光功率为525W时,原位生成NbC增强YCF102熔覆层具有较高的显微硬度及良好的耐磨性.  相似文献   

5.
为研究激光-氩弧焊(TIG)电弧复合热源表面熔覆工艺对熔覆层成形特征的影响,建立了激光电弧复合热源表面熔覆试验系统,分别采用大光斑半导体激光热源、激光与TIG复合热源在Q235母材上进行了Ni60合金粉末单道熔覆工艺试验,分析了激光功率、TIG电流对熔覆层高宽比、稀释率、浸润角等成形特征的影响.结果表明:随着激光功率或TIG电流的增加,熔覆层的熔宽、稀释率呈增加趋势,熔覆层的高宽比、浸润角减小.在复合热源熔覆过程中,引入电弧可以显著降低熔覆所需激光功率,可在减小激光热冲击作用的同时降低生产成本;引入小电流TIG电弧,可以降低熔覆层边缘的温度梯度,改善熔覆过程中熔覆层的铺展效果.  相似文献   

6.
激光熔覆技术的实质是合金粉末快速熔化和凝固的过程,其形成层的形状和性能与工艺参数密切相关.为了了解工艺参数对激光熔覆形成层几何特征及硬度的影响规律,根据正交试验设计方法设计研究了工艺参数(激光功率、扫描速率、送粉速率)对单道单层熔覆层几何特征(熔覆层高度、宽度与熔池深度)与硬度影响的试验,根据试验结果归纳了工艺参数对单道单层熔覆层几何特征与硬度的影响规律,解释了造成这些影响的原因,试验表明激光功率是影响熔覆层几何特征的最显著因素.此外,使用了一个激光熔覆层的几何特征数学模型对照验证了试验结果.  相似文献   

7.
研究了激光熔覆功率、扫描速度和熔覆材料对熔覆层组织结构与耐磨性等的影响.结果表明:梯度熔覆层连续完整,无裂纹、气孔等缺陷,与45钢基体呈冶金结合状态.熔覆层显微组织特征为枝晶、等轴晶等多种形貌的快速凝固组织,由α-Fe,CrNiFe-C和Cr7C3等组成.熔覆层显微硬度呈梯度分布,表层硬度达7.48GPa,过渡层硬度达5.52GPa,分别是基体硬度的3.74和2.76倍.激光熔覆技术可显著提高45钢的耐磨性能.  相似文献   

8.
为了确定高速钢刀具表面激光熔覆工艺的最优参数,利用COMSOL软件建立激光熔覆温度场三维数值模型,模拟高速钢基体单层单道熔覆Fe60粉末的动态过程,同时考虑粒子对激光束的遮蔽作用,优化热源模型.模拟结果发现,激光辐照前端熔覆层熔池温度梯度大,熔池尾端温度梯度趋于平缓.最终确定最优工艺参数为:激光功率1 300 W,扫描速度2 mm/s,送粉速率12 g/min.  相似文献   

9.
Q235钢表面激光熔覆Cr_7C_3的性能研究   总被引:1,自引:0,他引:1  
茅美红 《科技信息》2012,(5):111-112,133
利用激光熔覆技术将摩尔比为91:9的Cr、C合金粉末制备于Q235钢表面。采用光学显微镜、x射线衍射仪、扫描电子显微镜和硬度分析仪分析熔覆层的显微组织结构及截面的显微硬度。试验结果表明,当激光功率为2500W和扫描速度为2.5mm/s时,熔覆层与基体的冶金结合较好,同时可获得无裂纹、无孔洞且表面平整的涂层。  相似文献   

10.
为提高TC4钛合金表面耐磨性和耐腐蚀性,利用激光熔覆技术在TC4钛合金表面激光熔覆制备CoCrW涂层,并对其工艺及耐磨性和耐蚀性进行研究。结果表明:CoCrW熔覆层和TC4基体有着良好的冶金结合,熔覆涂层显微组织均匀致密,主要由树枝晶组成。在激光工艺参数中,扫描速度、离焦量、光斑直径和搭接率一致情况下,当激光功率为3000 W时,所得熔覆层硬度最大为1160 HV,为TC4基材硬度324 HV的近4倍,且在该功率下,CoCrW熔覆层平均摩擦系数最低为0.2363,磨损量最小,表现出较好的耐磨特性,磨损机制为磨粒磨损和轻微的黏着磨损;而TC4基材的平均摩擦系数为0.3598,磨损机制为黏着磨损和疲劳剥落磨损,此时,熔覆层的电化学腐蚀电位较高,腐蚀速率较低,表现出良好的耐蚀性。  相似文献   

11.
采用IPG-YLS-5000光纤激光器在Cu-Cr-Zr合金表面制备了Ni60+WC合金熔覆层。利用扫描电子显微镜、X射线衍射仪等分析手段对熔覆层的微观组织、界面成分、物相组成、硬度及耐磨性进行表征和测试,得到了工艺参数对稀释率的影响规律。结果显示,提高激光功率和激光扫描速率均可以增加稀释率。当WC含量较少时,WC颗粒全部熔解;当WC含量较多时,存在未熔解的WC颗粒相。随着WC含量的增加,熔覆层组织先粗化后细化,枝晶间分布有颗粒相。熔覆层的硬度和耐磨性远高于基体,并随着WC含量的增加而增加,熔覆层的硬度最高可达1 000 HV。随着WC含量的增加,熔覆层的磨损失重逐渐变小,与铜合金相比,当WC的含量达到20%时,磨损失重仅为1.1 g。  相似文献   

12.
基于自主研发的增减材复合工艺技术与装备,探索了激光功率和WC颗粒质量分数对316L不锈钢复合材料致密度、组织演变和表面耐磨性能的影响规律.结果表明:随着WC质量分数的增加,试样致密度呈现先升高后降低的趋势,而硬度和耐磨性能均逐渐提高,过多的WC颗粒会使工件内部产生热裂纹,同时降低了工件的表面质量;当激光功率由270W提高到330W时粉末充分熔化,凝固后未熔合缺陷明显减少.当WC颗粒质量分数为5%、激光功率为330W时,增材件的致密度最高达到99.6%;相比未添加WC颗粒的工件,力学性能、耐磨性能和表面质量等指标均有明显提高.  相似文献   

13.
低阶模CO2激光熔覆层形貌和质量的控制   总被引:1,自引:0,他引:1  
通过在316L不锈钢基材上进行激光熔覆,研究了低阶模CO2激光熔覆功率和离焦量对熔覆层形貌和质量影响.研究表明,随着离焦量增加,激光熔覆层宽度和熔化宽度增加,熔化深度降低.随着激光功率增加,激光熔覆层宽度、熔化宽度和熔化深度增加.熔化区的形状和熔合界面质量主要与离焦量的大小有关,随着离焦量增加,熔化区形状从类似于“蘑菇”形,过渡到熔合良好的平底状.因此,通过调节离焦量,低阶模CO2激光熔覆可以得到界面平整、熔合良好的熔覆层,采用低阶模CO2激光进行熔覆是可行的.  相似文献   

14.
为分析激光熔覆法制备TiC/Ti复合材料显微形貌的成因,对功率密度为21.2kW/cm^2、扫描速度15mm/s的CO2激光作用下的Ti-6A1—4V合金表面进行了Ti+TiC激光熔覆实验,并对其熔覆层温度波动进行了分析。采用XRD、SEM对Ti-4-TiC熔覆层进行表征,并测定熔覆层的显微维氏硬度。分析表明:用激光熔覆制备TiC/Ti复合材料时,熔覆层在数毫秒内熔化,并以约10^4℃/s速率初始冷却。熔覆层的维氏硬度高达10.8GPa,Ti填充杂乱的TiC枝晶间。熔覆层与基体具有良好的冶金结合,且热影响区厚度与经验计算值相近。  相似文献   

15.
为满足多种支承辊再制造表面硬度需求,采用激光熔覆技术,将添加不同比例纯镍粉的铁基合金粉末材料熔覆到Cr5支承辊钢表面,研究镍含量对熔覆层微结构及性能的影响.结果表明:所有材料设计成分条件下熔覆层的截面组织差异很小均为鱼骨状和网状枝晶组织.通过调整添加镍粉的量可以准确控制熔覆层的合金成分.随熔覆层中镍含量增多,熔覆层中奥氏体相显著增多,截面硬度显著下降.添加8%纯镍粉的粉末材料可以制备出硬度约为500 HV,可以满足Cr5支承辊再制造需求.  相似文献   

16.
对损伤的TC11钛合金零部件进行激光熔覆沉积修复,可在不影响零件使用性能的前提下,节约贵重钛合金资源,提高零件利用率。分析修复后熔覆层和基材组织性能和开裂倾向是激光熔覆沉积修复工艺的基础研究工作。采用高斯热源,建立了单道单层激光熔覆应力预测三维数值模型,研究了激光熔覆基板的应力分布规律。随后,进一步实验研究了TC11激光熔覆区的显微组织结构。结果表明,激光熔覆区可分为熔覆层、热影响区和热应力层3部分。基板热应力层的晶粒受到应力的作用变形显著。激光熔覆后基板应力仿真和实验结果分布趋势一致,且最大热应力深度随激光功率的增大而增大。  相似文献   

17.
为了实现表面损伤叶轮的再制造,提出了叶轮激光熔覆增材再制造流程,并利用激光熔覆技术在叶轮材料试样表面进行Fe基粉末熔覆实验;叶轮再制造流程主要包括设备拆解、清洗、检测、再制造加工、零件测试、装配、喷涂包装等;激光熔覆实验表明粉末与基体产生了良好的冶金结合,组织致密且无未熔化粉末颗粒,熔覆层硬度达到625.7 HV,约为基体材料硬度的1.57倍,屈服强度为641 MPa;激光熔覆再制造叶轮经着色探伤检测和工业CT检测等显示再制造熔覆区域无裂纹、气孔等质量问题,采用去重式平衡,动不平衡量小于标准值750 g.mm,叶轮安装调试一次成功,各项指标满足要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号