首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 65 毫秒
1.
It has been suggested that the human immunodeficiency virus type 2 (HIV-2) and the simian immunodeficiency virus from rhesus macaques (SIVmac) evolved from the sooty mangabey virus SIVsm (ref. 1). We now describe an HIV-2-related isolate, HIV-2-D205, from a healthy Ghanaian woman that is genetically equidistant to the prototypic HIV-2 strains and to SIVsm and SIVmac. Supported by the observation that HIV-2D205 differs in a step of envelope glycoprotein processing, our data indicate that it could represent an alternative HIV-2 subtype and that viruses of the HIV-2/SIVsm/SIVmac group could have already infected humans before HIV-2 and SIVsm/SIVmac diverged.  相似文献   

2.
Since the isolation of an HIV-2-related virus from captive macaques (SIVMAC), the origin of human immunodeficiency viruses, a much debated subject, has been attributed to monkeys. The sequence of SIVAGM, which is derived from a naturally infected African green monkey, shows equal relatedness to HIV-1 and HIV-2, suggesting that the derivation of these viruses from SIVAGM is unlikely. Recent sequence analysis of SIV from a captive sooty mangabey (SIVMAC), however, shows its close relatedness to HIV-2 and SIVMAC, indicating a possible origin of HIV-2 and SIVMAC from SIVSM (refs 4, 7, 9). We report here the sequence of a novel simian lentivirus, SIVMND, isolated from a wild-caught mandrill in Africa. It is distinct from the three other main groups, HIV-1, HIV-2/SIVMAC/SIVSM and SIVAGM, and therefore represents a fourth main group of primate lentiviruses. Phylogenetic analysis indicates that these four main virus groups might have diverged from a common ancestor at about the same time, long before the spread of AIDS in humans.  相似文献   

3.
Although much is now known of the strain variation among the type-1 human immunodeficiency virus (HIV-1), which is the cause of AIDS (acquired immune deficiency syndrome) in the United States, Europe, and Central Africa, much less is yet known about a second group of viruses that have been found in West Africans. One member of this group, named human T-cell lymphotropic virus type 4 (HTLV-4), has been isolated from healthy Senegalese. Another is the virus isolated from West Africans with AIDS-like illness and originally called LAV-2 but now renamed HIV-2. Both these viruses seem to be less closely related to HIV-1 than they are to a virus of healthy African green monkeys, known variously as simian T-cell lymphotropic virus type 3 (STLV-3) or simian immunodeficiency virus (SIV), which in turn is related to viruses isolated from healthy sooty mangabeys and captive macaques with a form of immunodeficiency (to distinguish these viruses they are referred to as STLV-3 (or SIV)agm, STLV-3mac, or STLV-3smm). To clarify the relationship between the various HIVs, STLV-3s and HTLV-4 we are determining and comparing the molecular and biological characteristics of several of them. Following our recent publication of a restriction-site map of STLV-3agm, we now report that the equivalent map of three isolates of HTLV-4 is remarkably similar to it. In addition we present comparative sequence data on the long terminal repeats (LTR) of HTLV-4, STLV-3agm, HIV-1 and HIV-2, together with evidence that cloned HTLV-4 uses the same receptor as HIV-1 and induces some, but not all, of the cytopathic effects attributed to most isolates of HIV-1 and HIV-2.  相似文献   

4.
Because of the growing incidence of AIDS (acquired immune deficiency syndrome), the need for studies on animal models is urgent. Infection of chimpanzees with the retroviral agent of human AIDS, the human immunodeficiency virus (HIV), will have only limited usefulness because chimpanzees are in short supply and do not develop the disease. Among non-human primates, both type D retroviruses and lentiviruses can be responsible for immune deficiencies. The D-type retroviruses, although important pathogens in macaque monkey colonies, are not satisfactory as a model because they differ in genetic structure and pathophysiological properties from the human AIDS viruses. The simian lentivirus, previously referred to as simian T-cell lymphotropic virus type III (STLV-III), now termed simian immunodeficiency virus (SIV) is related to HIV by the antigenicity of its proteins and in its main biological properties, such as cytopathic effect and tropism for CD4-bearing cells. Most importantly, SIV induces a disease with remarkable similarity to human AIDS in the common rhesus macaques, which therefore constitute the best animal model currently available. Natural or experimental infection of other monkeys such as African green monkeys or sooty mangabeys has not yet been associated with disease. Molecular approaches of the SIV system will be needed for biological studies and development of vaccines that could be tested in animals. We have cloned and sequenced the complete genome of SIV isolated from a naturally infected macaque that died of AIDS. This SIVMAC appears genetically close to the agent of AIDS in West Africa, HIV-2, but the divergence of the sequences of SIV and HIV-2 is greater than that previously observed between HIV-1 isolates.  相似文献   

5.
Infection of macaques with simian immunodeficiency virus (SIV) and human immunodeficiency virus type 2 (HIV-2) are useful models for studies of immunotherapy and vaccination against HIV as well as for testing of antiviral drugs. Vaccine research showing protective immunity in immunized monkeys has indicated that it will be possible to develop a vaccine for prevention of human HIV infection, although many hurdles remain. The design of an HIV vaccine would be helped if the basis of the protective immunity could be elucidated. Passive immune prophylaxis offers a means to determine the relative role of antibodies in protection against infection. We have studied whether a transfer of antibodies can prevent HIV-2 and SIVsm (SIV of sooty mangabey origin) infection in cynomolgus monkeys. Sera with high antibody titres were collected, heat-treated and injected into naive animals 6 h before challenge with 10-100 monkey-infectious doses of live homologous virus. All control animals treated with normal monkey serum (n = 6) or no serum (n = 39) became infected by the challenge virus, whereas five out of seven animals pretreated with antibody-containing serum at a dose of 9 ml kg-1 resisted infection. Thus passively transferred antibodies can protect against a low-dose lentivirus challenge in a nonhuman primate.  相似文献   

6.
HIV infection of primate lymphocytes and conservation of the CD4 receptor   总被引:2,自引:0,他引:2  
The CD4 T-lymphocyte differentiation antigen is an essential component of the cell surface receptor for human immunodeficiency viruses (HIVs) causing AIDS (acquired immune deficiency syndrome) (refs 1-3). Peripheral blood lymphocytes of apes, New World and Old World monkeys express cell surface antigens homologous to CD4 of human T-helper lymphocytes. The cells of several of these species can be infected in short term culture with diverse strains of the type-1 or type-2 human immunodeficiency viruses (HIV-1 and HIV-2). HIV-1 is the prototype AIDS virus, and HIV-2 is the second type of AIDS virus, prevalent in West Africa. Infection of the primate cells correlates with evolutionary conservation on CD4 of one particular epitope cluster, and is inhibited by treatment of the cells with monoclonal antibodies to this epitope. The capacity of HIV to replicate in simian cells may provide a means for evaluating antiviral drugs and vaccines.  相似文献   

7.
Comparison of simian immunodeficiency virus isolates   总被引:20,自引:0,他引:20  
Information on the extent of genetic variability among non-human primate lentiviruses related to human immunodeficiency virus (HIV) is sorely lacking. Here we describe the isolation of two molecular clones from the simian immunodeficiency virus (SIV) and their use to derive restriction endonuclease maps of five SIV isolates from rhesus macaques and one from a cynomolgus macaque. Although similar, all six viral isolates are readily distinguishable; the single isolate from a cynomolgus macaque is the most different. The restriction endonuclease map of one macaque isolate (SIVMAC-251) is identical to that published by others for STLV-IIIAGM of African green monkeys and for HTLV-IV of humans. Nucleotide sequences from the envelope region of cloned SIVMAC-251 have more than 99% identify to previously published sequences for STLV-IIIAGM (refs 2, 4) and HTLV-IV (ref. 4). These results and other observations provide strong evidence that isolates previously referred to as STLV-IIIAGM and HTLV-IV by others are not authentic, but were derived from cell cultures infected with SIVMAC-251.  相似文献   

8.
Some wild African green monkeys are known to be naturally infected with a retrovirus related to human immunodeficiency virus (HIV) without having any apparent symptoms of an AIDS-like disease. This simian immunodeficiency virus, designated SIVAGM, may be helpful in clarifying the evolution and pathogenicity of HIV. Some virus strains that were previously reported to be isolated from African green monkeys were shown to be laboratory contaminations of SIVMAC (SIV from a rhesus macaque) Here we report the complete DNA sequence of authentic SIVAGM, which was isolated from a naturally infected African green monkey of Kenyan origin. Comparison of the genome of SIVAGM with those of known HIV/SIVs indicates that the virus is a new simian lentivirus that is approximately equally distantly related to HIV-1 and HIV-2 in contrast to SIVMAC, which is much closer to HIV-2 than to HIV-1 (refs 5, 9).  相似文献   

9.
The characterization of HIV-1 (HTLV-III/LAV), the human retrovirus associated with AIDS (acquired immune deficiency syndrome) has led to the identification of a group of related human and simian retroviruses which also infect CD4-bearing T lymphocytes. Simian T-lymphotropic virus type III (simian immodeficiency virus) from macaques (STLV-IIIMAC) induces symptoms similar to those of AIDS in infected macaques, but isolates from African green monkeys (STLV-IIIAGM) and mangabeys (STLV-IIMM) appear to be non-pathogenic in these animals. A human virus immunologically related to STLV-IIIAGM (HTLV-IV), reported to have been isolated from healthy humans, has been shown to be almost identical to STLV-IIIAGM, which has called into question the independent origin of these viruses. Here we report the complete DNA sequence of STLV-IIIAGM and analyse its relationship with the genomes of the HTLV-IIIB strain of HIV-1, HIV-2ROD (previously called LAV-2) and several ungulate lentiretroviruses. STLV-IIIAGM and HIV-2 are closely related, and more distantly related to HIV-1.  相似文献   

10.
The phylogenetic history of immunodeficiency viruses   总被引:19,自引:0,他引:19  
T F Smith  A Srinivasan  G Schochetman  M Marcus  G Myers 《Nature》1988,333(6173):573-575
Knowledge of the phylogenetic history of the human immunodeficiency viruses (HIV-1 and HIV-2) is important for our understanding of the epidemiology of AIDS, the disease caused by these viruses. Reconstruction of the evolutionary tree is hampered, however, by two problems. One is the high variation in nucleotide sequence between the known HIV isolates which can create formidable difficulties in identifying homologous genomic sites that may be used in a molecular phylogenetic reconstruction. Another impediment has been the lack of unequivocal time calibration points: there is only a sparse 'fossil record' for HIV and limited historical epidemiological data. We have largely overcome these difficulties by: (1) a thorough optimal-sequence alignment analysis; (2) the inclusion of sequences of an early (1976) HIV-1 isolate, a recent (1986) HIV-2 isolate and two simian immunodeficiency viruses (SIV) along with five other HIV-1 isolates; and (3) the reconstruction of a minimum-length evolutionary tree based on the envelope-gene variable positions. We conclude that HIV-1 may have evolved from its common ancestor with HIV-2 as recently as 40 years ago.  相似文献   

11.
选取了16株SIV和9株HIV毒株,以人T细胞白血病病毒HTLV-1为outgroup,使用CLUSTAL X、PHYLIP及MEGA三种软件对它们的基因组序列及三个主要蛋白(Env,Gag,Pol)序列分别进行了比对分析,用Neighbor-Joining(N-J)方法和Maximum Likelihood(ML)方法分别构建出进化树.结果显示HIV起源于SIV,其中HIV-1的起源与SIVcpz的几种亚型高度相关,HIV-2的起源与SIVsm及SIVmm高度相关.  相似文献   

12.
B H Hahn  L I Kong  S W Lee  P Kumar  M E Taylor  S K Arya  G M Shaw 《Nature》1987,330(6144):184-186
Human immunodeficiency virus type 1 (HIV-1) is the aetiologic agent of AIDS (acquired immune deficiency syndrome) in most countries and probably originated in Central Africa like the AIDS epidemic itself. Evidence for a second major group of human immunodeficiency-associated retroviruses came from a report that West African human populations like wild-caught African green monkeys had serum antibodies that reacted more strongly with a simian immunodeficiency virus (STLV-3Mac) (ref.6) than with HIV-1. Novel T-lymphotropic retroviruses were reported to have been isolated from healthy Senegalese West Africans (HTLV-4) (ref. 4) and from African green monkeys (STLV-3AGM) (ref. 7), and a different retrovirus (HIV-2) was identified in other West African AIDS patients. Genomic analysis of HIV-2 clearly distinguished it from STLV-3 (ref. 9), but restriction enzyme site-mapping of three different HTLV-4 isolates and six different STLV-3AGM isolates showed them to be essentially indistinguishable. In this report we clone, restriction map, and partially sequence three isolates of HTLV-4 (PK82, PK289, PK190) (ref. 4). We find that these viruses differ in nucleotide sequence from each other and from three isolates of STLV-3AGM (K78, K6W, K1) (ref. 7) by 1% or less. We also report the isolation of a T-lymphotropic retrovirus from the peripheral blood of a healthy Senegalese woman which hybridizes preferentially to HIV-2 specific DNA probes. We conclude that HTLV-4 (ref. 4) and STLV-3AGM (ref. 7) are not independent virus isolates and that HIV-2 is present in Senegal as it is in other West African countries.  相似文献   

13.
Chimpanzees (Pan troglodytes troglodytes) from west central Africa are recognized as the reservoir of simian immunodeficiency viruses (SIVcpzPtt) that have crossed at least twice to humans: this resulted in the AIDS pandemic (from human immunodeficiency virus HIV-1 group M) in one instance and infection of just a few individuals in Cameroon (by HIV-1 group N) in another. A third HIV-1 lineage (group O) from west central Africa also falls within the SIVcpzPtt radiation, but the primate reservoir of this virus has not been identified. Here we report the discovery of HIV-1 group O-like viruses in wild gorillas.  相似文献   

14.
Human infection by genetically diverse SIVSM-related HIV-2 in west Africa.   总被引:41,自引:0,他引:41  
Our understanding of the biology and origins of human immunodeficiency virus type 2 (HIV-2) derives from studies of cultured isolates from urban populations experiencing epidemic infection and disease. To test the hypothesis that such isolates might represent only a subset of a larger, genetically more diverse group of viruses, we used nested polymerase chain reactions to characterize HIV-2 sequences in uncultured mononuclear blood cells of two healthy Liberian agricultural workers, from whom virus isolation was repeatedly unsuccessful, and from a culture-positive symptomatic urban dweller. Analysis of pol, env and long terminal repeat regions revealed the presence of three highly divergent HIV-2 strains, one of which (from one of the healthy subjects) was significantly more closely related to simian immunodeficiency viruses infecting sooty mangabeys and rhesus macaques (SIVSM/SIVMAC) than to any virus of human derivation. This subject also harboured multiply defective viral genotypes that resulted from hypermutation of G to A bases. Our results indicate that HIV-2, SIVSM and SIVMAC comprise a single, highly diverse group of lentiviruses which cannot be separated into distinct phylogenetic lineages according to species of origin.  相似文献   

15.
The CD4 antigen has been subverted as a receptor by the human and simian immunodeficiency viruses (HIV-1, HIV-2 and SIV). Several groups have reported that recombinant, soluble forms of the CD4 molecule (sCD4) block the infection of T lymphocytes by HIV-1, as CD4 binds the HIV envelope glycoprotein, gp120, with high affinity. We now report that sCD4 blocks diverse strains of HIV-1, HIV-2 and SIV, but is less effective for HIV-2. The blocking effect is apparent even after adsorption of virions to CD4 cells. Soluble CD4 prevents HIV infection of T-lymphocytic and myelomonocytic cell lines, but neither sCD4 nor anti-CD4 antibodies inhibit infection of glioma and rhabdomyosarcoma cell lines.  相似文献   

16.
The CD4 molecule is a high-affinity cell-surface receptor for the human immunodeficiency virus (HIV-1) and a soluble truncated form of CD4 produced by recombinant DNA technology is a potent inhibitor of HIV-1 replication and HIV-1-induced cell fusion in vitro. Rhesus monkeys infected with the simian immunodeficiency virus of macaques (SIVMAC), a virus closely related to HIV-1, develop an AIDS-like syndrome, and so provide an important model for the evaluation of potential AIDS therapies. We have assessed the therapeutic effect of recombinant soluble CD4 in SIVMAC-infected rhesus monkeys. Virus was readily isolated from peripheral blood lymphocytes and bone marrow cells of these animals before starting treatment with soluble CD4, but became difficult to isolate soon after treatment had begun. Moreover the diminished growth of both granulocyte-macrophage and erythrocyte progenitor colonies from the bone marrow of these monkeys rose to normal levels during treatment. These findings indicate that soluble CD4 could prove valuable in the treatment of AIDS.  相似文献   

17.
Identification of a protein encoded by the vpu gene of HIV-1   总被引:31,自引:0,他引:31  
Human immunodeficiency virus 1 (HIV-1) is the aetiological agent of AIDS. The virus establishes lytic, latent and non-cytopathic productive infection in cells in culture. The complexity of virus-host cell interaction is reflected in the complex organization of the viral genome. In addition to the genes that encode the virion capsid and envelope proteins and the enzymes required for proviral synthesis and integration common to all retroviruses, HIV-1 is known to encode at least four additional proteins that regulate virus replication, the tat, art, sor and 3' orf proteins, as well as a protein of unknown function from the open reading frame called R. Close examination of the nucleic acid sequences of the genomes of multiple HIV isolates raised the possibility that the virus encodes a previously undetected additional protein. Here we report that HIV-1 encodes a ninth protein and that antibodies to this protein are detected in the sera of people infected with HIV-1. This protein distinguishes HIV-1 isolates from the other human and simian immunodeficiency viruses (HIV-2 and SIV) that do not have the capacity to encode a similar protein.  相似文献   

18.
Genetic organization of a chimpanzee lentivirus related to HIV-1   总被引:44,自引:0,他引:44  
Simian immunodeficiency viruses have been isolated from four species of monkey, the 'captive' macaque and mangabey and the 'feral' African green monkey and mandrill. While none of these viruses is a replica of HIV-1, the macaque and mangabey viruses represent correct genetic models for HIV-2, possessing exactly the same complement of genes. Recently a lentivirus has been identified in two wild chimpanzees (Pan troglodytes troglodytes) in Gabon, west equatorial Africa, and isolated from one of them. This virus is referred to as SIVCPZ. Sera from these animals cross reacted with all the HIV-1 proteins including the envelope glycoproteins. Here, we describe the molecular cloning and sequencing of an infectious proviral clone of SIVCPZ. The overall genetic organization was the same as that of HIV-1, but phylogenetic analysis revealed that the sequence was more divergent than any HIV-1 sequence reported so far. The vpu gene product, found only in the type 1 viruses, was particularly different (64% divergent to HIV-1BRU) suggesting that the SIVCPZ represents a distinct subtype. These findings indicate that there is a larger pool of simian lentiviruses than previously suspected and revives debate as to the origins of HIV-1.  相似文献   

19.
Macrophages and dendritic cells have key roles in viral infections, providing virus reservoirs that frequently resist antiviral therapies and linking innate virus detection to antiviral adaptive immune responses. Human immunodeficiency virus 1 (HIV-1) fails to transduce dendritic cells and has a reduced ability to transduce macrophages, due to an as yet uncharacterized mechanism that inhibits infection by interfering with efficient synthesis of viral complementary DNA. In contrast, HIV-2 and related simian immunodeficiency viruses (SIVsm/mac) transduce myeloid cells efficiently owing to their virion-associated Vpx accessory proteins, which counteract the restrictive mechanism. Here we show that the inhibition of HIV-1 infection in macrophages involves the cellular SAM domain HD domain-containing protein 1 (SAMHD1). Vpx relieves the inhibition of lentivirus infection in macrophages by loading SAMHD1 onto the CRL4(DCAF1) E3 ubiquitin ligase, leading to highly efficient proteasome-dependent degradation of the protein. Mutations in SAMHD1 cause Aicardi-Goutières syndrome, a disease that produces a phenotype that mimics the effects of a congenital viral infection. Failure to dispose of endogenous nucleic acid debris in Aicardi-Goutières syndrome results in inappropriate triggering of innate immune responses via cytosolic nucleic acids sensors. Thus, our findings show that macrophages are defended from HIV-1 infection by a mechanism that prevents an unwanted interferon response triggered by self nucleic acids, and uncover an intricate relationship between innate immune mechanisms that control response to self and to retroviral pathogens.  相似文献   

20.
Li Q  Duan L  Estes JD  Ma ZM  Rourke T  Wang Y  Reilly C  Carlis J  Miller CJ  Haase AT 《Nature》2005,434(7037):1148-1152
In early simian immunodeficiency virus (SIV) and human immunodeficiency virus-1 (HIV-1) infections, gut-associated lymphatic tissue (GALT), the largest component of the lymphoid organ system, is a principal site of both virus production and depletion of primarily lamina propria memory CD4+ T cells; that is, CD4-expressing T cells that previously encountered antigens and microbes and homed to the lamina propria of GALT. Here, we show that peak virus production in gut tissues of SIV-infected rhesus macaques coincides with peak numbers of infected memory CD4+ T cells. Surprisingly, most of the initially infected memory cells were not, as expected, activated but were instead immunophenotypically 'resting' cells that, unlike truly resting cells, but like the first cells mainly infected at other mucosal sites and peripheral lymph nodes, are capable of supporting virus production. In addition to inducing immune activation and thereby providing activated CD4+ T-cell targets to sustain infection, virus production also triggered an immunopathologically limiting Fas-Fas-ligand-mediated apoptotic pathway in lamina propria CD4+ T cells, resulting in their preferential ablation. Thus, SIV exploits a large, resident population of resting memory CD4+ T cells in GALT to produce peak levels of virus that directly (through lytic infection) and indirectly (through apoptosis of infected and uninfected cells) deplete CD4+ T cells in the effector arm of GALT. The scale of this CD4+ T-cell depletion has adverse effects on the immune system of the host, underscoring the importance of developing countermeasures to SIV that are effective before infection of GALT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号