首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Proteins enter the secretory pathway by two general routes. In one, the complete polypeptide is made in the cytoplasm and held in an incompletely folded state by chaperoning adenosine triphosphatases (ATPases) such as hsp70. InSaccharomyces cerevisiae, fully synthesized secretory precursors engage the endoplasmic reticulum (ER) membrane by interaction with a set of Sec proteins comprising the polypeptide translocation apparatus (Sec61p, Sec62p, Sec63p, Sec71p, Sec72p). Productive interaction requires displacement of hsp70 from the precursor, a reaction that is facilitated by Ydj1p, a homologue of theEscherichia coli DnaJ protein. Both DnaJ and Ydj1p regulate chaperone activity by stimulating the ATPase activity of their respective hsp70 partners (E. coli DnaK andS. cerevisiae Ssa1p, resepectively). In the ER lumen, another hsp70 chaperone, BiP, binds ATP and interacts with the ER membrane via its contact with a peptide loop of Sec63p. This loop represents yet another DnaJ homologue in that it contains a region of 70 residue similarity to the J box, the most conserved region of the DnaJ family of proteins. In the presence of ATP, under conditions in which BiP can bind to Sec63p, the secretory precursor passes from the cytosol into the lumen through a membrane channel formed by Sec61 p. A second route to the membrane pore that is used by many other secretory precursors, particularly in mammalian cells, requires that the polypeptide engage the ER membrane as the nascent chain emerges from the ribosome. Such cotranslational translocation bypasses the need for certain Sec proteins, instead utilizing an alternate set of cytosolic and membrane factors that allows the nascent chain to be inserted directly into the Sec61p channel.  相似文献   

2.
Functions and pathologies of BiP and its interaction partners   总被引:1,自引:1,他引:0  
The endoplasmic reticulum (ER) is involved in a variety of essential and interconnected processes in human cells, including protein biogenesis, signal transduction, and calcium homeostasis. The central player in all these processes is the ER-lumenal polypeptide chain binding protein BiP that acts as a molecular chaperone. BiP belongs to the heat shock protein 70 (Hsp70) family and crucially depends on a number of interaction partners, including co-chaperones, nucleotide exchange factors, and signaling molecules. In the course of the last five years, several diseases have been linked to BiP and its interaction partners, such as a group of infectious diseases that are caused by Shigella toxin producing E. coli. Furthermore, the inherited diseases Marinesco-Sj?gren syndrome, autosomal dominant polycystic liver disease, Wolcott-Rallison syndrome, and several cancer types can be considered BiP-related diseases. This review summarizes the physiological and pathophysiological characteristics of BiP and its interaction partners. Received 20 November 2008; received after revision 09 December 2008; accepted 12 December 2008  相似文献   

3.
The stably transfected rat cell line HR24 expressing high levels of the inducible human hsp70 and its parental cell line Rat-1 were used for in vivo studies to analyse the role of hsp70 during thermal protein denaturation and the subsequent renaturation. In order to monitor denaturation and renaturation of a cellular protein in vivo, both cell lines were transiently transfected with firefly luciferase (Luc). The continuous monitoring of Luc activity during and after heat stress allowed a detailed analysis of the inactivation and reactivation kinetics in cells grown in monolayers. The aim of these studies was to distinguish a protective effect of increased hsp70 levels during heat shock-induced protein inactivation from a stimulation of reactivation. In this paper we show that in cells that are stably transfected with hsp70, thermal Luc inactivation decreased, and subsequent reactivation yielded higher activity levels, compared with the parental cells. The difference in early inactivation kinetics observed in the two cell lines suggests an immediate effect of the presence of an extra amount of hsp70 on enzyme inactivation. Using different mathematical models, the heat-induced inactivation and reactivation kinetics was compared with simulations of denaturation and renaturation. It is concluded that the model in which it is assumed that hsp70 is able to interact with partially denatured proteins, which did not yet lose their enzymatic activity, most optimally explains the experimental observations. Received 2 December 1998; received after revision 19 February 1999; accepted 18 March 1999  相似文献   

4.
A bi-allelic polymorphism found in the regulatory region of the human heat shock (HS) protein (HSP) hsp70-1 gene, which comprises an A-->C transversion, 3 bp upstream of the HS element (HSE), has been associated with extended HLA haplotypes. In view of the chaperoning and protective functions of Hsp70, we investigated whether this hsp70-1 bi-allelic polymorphism could modulate the stress response, which may relate to enhanced resistance or susceptibility to certain diseases. We compared the basal and HS-induced HS factor (HSF)-binding activity of the two polymorphic HSEs, hsp70-1 mRNA accumulation and HSP expression in two human Epstein Barr virus (EBV)-transformed B cell lines typed for hsp70-1 promoter alleles. Our results suggest that hsp70-1 promoter polymorphism does not influence HSF-binding activity, hsp70 mRNA accumulation or synthesis in human EBV-transformed B cell lines.  相似文献   

5.
The family of hsp70 (70 kilodalton heat shock protein) molecular chaperones plays an essential and diverse role in cellular physiology, Hsp70 proteins appear to elicit their effects by interacting with polypeptides that present domains which exhibit non-native conformations at distinct stages during their life in the cell. In this paper we review work pertaining to the functions of hsp70 proteins in chaperoning mitochondrial protein biogenesis. Hsp70 proteins function in protein synthesis, protein translocation across mitochondrial membranes, protein folding and finally the delivery of misfolded proteins to proteolytic enzymes in the mitochondrial matrix.  相似文献   

6.
Hsp70 and aging   总被引:1,自引:0,他引:1  
  相似文献   

7.
8.
Heat shock protein gene expression during Xenopus development   总被引:2,自引:0,他引:2  
Stress-induced heat shock protein gene expression is developmentally regulated during early embryogen esis of the frog, Xenopus laevis. For example, a number of heat shock protein genes, such as hsp70, hsp90, and ubiquitin are not heat-inducible until after the midblastula stage of embryogenesis. Furthermore, the family of small heat shock protein genes, hsp30, are differentially expressed after the midblastula stage as well as being regulated at the level of mRNA stability. Many of these stress proteins are also synthesized constitutively during oogenesis and embryogenesis during which they may act as molecular chaperones as well as being involved in sequestering proteins in an inactive state until required by the developing embryo. Furthermore the induction of these stress protein genes has been correlated with enhanced thermoresistance. During stressful conditions heat shock proteins probably prevent aggregation or misfolding of damaged protei ns within the embryo.  相似文献   

9.
The heat shock (HS) response is a general homeostatic mechanism that protects cells and the entire organism from the deleterious effects of environmental stresses. It has been demonstrated that heat shock proteins (HSP) play major roles in many cellular processes, and have a unique role in several areas of cell biology, from chronic degenerative diseases to immunology, from cancer research to interaction between host and parasites. This review deals with thehsp70 gene family and with its protein product, hsp70, as an antigen when pathogens infect humans. Members of HSP have been shown to be major antigens of many pathogenic organisms when they experience a major temperature shift upwards at the onset of infection and become targets for host B and T cells.  相似文献   

10.
In vitro import studies have confirmed the participation of cytosolic protein factors in the import of various precursor proteins into mitochondria. The requirement for extramitochondrial adenosine triphosphate for the import of a group of precursor proteins seems to be correlated with the chaperone activity of the cytosolic protein factors. One of the cytosolic protein factors is hsp70, which generally recognizes and binds unfolded proteins in the cytoplasm. Hsp70 keeps the newly synthesized mitochondrial precursor proteins in import-competent unfolded conformations. Another cytosolic protein factor that has been characterized is mitochondrial import stimulation factor (MSF), which seems to be specific to mitochondrial precursor proteins. MSF recognizes the mitochondrial precursor proteins, forms a complex with them and targets them to the receptors on the outer surface of mitochondria.  相似文献   

11.
12.
Heat shock genes are found in all organisms, and synthesis of heat shock proteins is induced by various stressors in nearly all the cells forming these organisms. However, a particular situation is noticed for hsp70 genes in mouse embryos at the beginning of their development. First, spontaneous expression of hsp70 is observed at the onset of zygotic genome activity. Second, inducible expression is delayed until morula or early blastocyst stages. A better understanding of both these points depends on a more careful analysis of hsp70 expression in relation to their major regulators, the heat shock factors. In this review, we will see how the development of the preimplanta tion embryo highlights the complexity of heat shock gene regulation involving trans-cis interactions and the cellular and nuclear environment.  相似文献   

13.
One problem associated with the development of subunit vaccines is their limited immunogenicity, due to their physico-chemical structure, their inability to encounter the correct MHC restriction element, or the need for strong adjuvants to be delivered along with them. These problems are usually solved by conjugating target epitopes (peptides or oligosaccharides) with carrier proteins which provide a source of T-cell epitopes recognised by a large proportion of the vaccinated individuals. We have shown that mycobacterial hsp65 and hsp70 exert a strong helper effect in vivo when conjugated to synthetic peptides or oligosaccharides. Interestingly, this helper effect did not require the need for any adjuvant, either in mice or in monkeys. The helper effect mediated by the hsp65 required that animals were previously primed with either live BCG or the hsp65 alone; on the other hand, such a priming was not required when the hsp70 was used in the conjugates. Similar results were obtained with HSP molecules fromEscherichia coli. This may suggest that the adjuvant-free helper effect observed applies not only to mycobacterial HSP, but also to HSP from other prokaryotes. These findings suggest that microbial hsp70 could be considered for the design of conjugated vaccine constructs for eventual human use.  相似文献   

14.
Numerous reports suggest that stress protein accumulation confers protection in various mammalian tissues against differing stresses. The purpose of this article is to review the evidence that stress proteins, in particular hsp70, are able to alter the resistance of the heart to subsequent ischaemic and non-ischaemic injury and to discuss the possible physiological basis for this apparent protection. The possible, though unlikely involvement of heat stress proteins in classical ischaemic preconditioning is addressed as is the possibility of their involvement in a delayed second window of protection.  相似文献   

15.
Heat shock genes exhibit complex patterns of spatial and temporal regulation during embryonic development of a wide range of organisms. Our laboratory has been involved in an analysis of heat shock gene expression in the zebrafish, a model system which is now utilized extensively for the examination of early embryonic development of vertebrates. Members of the zebrafish hsp47, hsp70 and hsp90 gene families have been cloned and shown to be closely related to their counterparts in higher vertebrates. Expression of these genes has been examined using Northern blot and whole mount in situ hybridization analyses. Both the hsp47 and hsp90 genes are expressed in a highly tissue-restricted manner during normal development. The data raise a number of interesting questions regarding the function and regulation of these heat shock genes during early zebrafish development.  相似文献   

16.
Inflammation results from the recruitement to a given tissue or organ and the activation of leucocytes, among which the monocytes-macrophages play a major role. These phagocytic cells produce high levels of reactive oxygen species (ROS) as well as cytokines. Whereas both ROS and cytokines have the potential to regulate the expression of heat shock (HS)/stress proteins (HSP), it appears that these proteins in turn have the ability to protect cells and tissues from the deleterious effects of inflammation. The mechanisms by which such protection occurs include prevention of ROS-induced DNA strand breaks and lipid peroxidation as well as protection from mitochondrial structure and function. In vivo, HS protects organs against a number of lesions associated with the increased production of ROS and/or cytokines. In an animal model for adult respiratory distress syndrome, an acute pulmonary inflammatory condition, HS completely prevented mortality. HSP (hsp70 in particular) may also exert protective effects in the immune system by contributing to the processing and presentation of bacterial and tumoral antigens. The analysis of the expression of hsp70 may prove of diagnostic and prognostic value in inflammatory conditions and therapeutical applications are being considered.  相似文献   

17.
CpG motifs originating from bacterial DNA (CpG DNA) can act as danger signals for the mammalian immune system. These CpG DNA motifs like many other pathogen-associated molecular patterns are believed to be recognized by a member of the toll-like receptor family, TLR-9. Here we show results suggesting that heat shock protein 90 (hsp90) is also implicated in the recognition of CpG DNA. Hsp90 was characterized as a binder to oligodeoxynucleotides (ODNs) containing CpG motifs (CpG ODNs) after several purification steps from crude protein extracts of peripheral blood mononuclear cells. This finding was further supported by direct binding of CpG ODNs to commercially available human hsp90. Additionally, immunohistochemistry studies showed redistribution of hsp90 upon CpG ODN uptake. Thus, we propose that hsp90 can act as a ligand transfer molecule and/or play a central role in the signaling cascade induced by CpG DNA. Received 18 December 2002; accepted 6 January 2002 RID="*" ID="*"Corresponding author. B. Agerberth and G. H. Gudmundsson contributed equally to this work.  相似文献   

18.
T R Garbe 《Experientia》1992,48(7):635-639
Invasive microorganisms encounter defensive attempts of the host to starve, destroy and eliminate the infection. In experimental model systems aiming to imitate defensive actions of the host, microorganisms respond by the rapid acceleration in the rate of expression of heat shock and other stress proteins. Heat shock proteins (hsp) of most if not all pathogens are major immune targets for both B- and T-cells. Host cells involved in the defensive action cannot avoid exposure to their own reactive compounds, such as oxygen radicals, resulting in premature cell death and tissue damage. Long-term consequences to the host may include cancer. In cells in tissue culture, induction of host-specific hsps occurs upon exposure to oxidants and in viral infections. Drugs that bind to members of the hsp70 family induce peroxisome proliferation and hepatocarcinoma, but may open the way for the development of novel drugs in support of antimetabolite treatment of infections and cancer.  相似文献   

19.
Invasive microorganisms encounter defensive attempts of the host to starve, destroy and eliminate the infection. In experimental model systems aiming to imitate defensive actions of the host, microorganisms respond by the rapid acceleration in the rate of expression of heat shock and other stress proteins. Heat shock proteins (hsp) of most if not all pathogens are major immune targets for both B- and T-cells. Host cells involved in the defensive action cannot avoid exposure to their own reactive compounds, such as oxygen radicals, resulting in premature cell death and tissue damage. Long-term consequences to the host may include cancer. In cells in tissue culture, induction of host-specific hsps occurs upon exposure to oxidants and in viral infections. Drugs that bind to members of the hsp70 family induce peroxisome proliferation and hepatocarcinoma, but may open the way for the development of novel drugs in support of antimetabolite treatment of infections and cancer.  相似文献   

20.
The involvement of heat shock proteins in immune response is categorized into four distinct paradigms. In the First Paradigm, HSP derived from foreign organisms act as classical foreign antigens, and they elicit immune response to the non-conserved HSP epitopes. The Second Paradigm refers to instances where the host responds to self HSP to which there is no central or peripheral tolerance. The Third Paradigm involves molecular mimicry, where cross-reactivity between an HSP and another protein leads to an immune response to the latter under conditions which elicit an immune response to the former, such as infection with a bacterium whose immunodominant antigen is an HSP. The Fourth Paradigm refers to situations where an HSP-antigen complex elicits an effective response to the antigen andnot to the HSP. Thus the HSP acts as a carrier for the antigenic peptide. The role of HSP in recognition by γδ T cells may also fall into this paradigm. In this article, the Fourth Paradigm is considered as a crucial element in the development of vaccines against cancers and infectious diseases, and is analyzed through the prism of the observed association of hsp70 species with antigenic peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号