首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evidence of en bloc duplication in vertebrate genomes   总被引:18,自引:0,他引:18  
It has been 30 years since it was first proposed that the vertebrate genome evolved through several rounds of genome-wide duplications (polyploidizations). Despite rapid advances in genetics, including sequencing of the complete genomes of several divergent species, this hypothesis has not been tested rigorously and is still a matter of debate. If polyploidizations occurred during chordate evolution, there should be a network of paralogous regions in the present-day jawed vertebrate (Gnathostomata) genomes. Here we present an investigation of the major histocompatibility complex (MHC) paralogous regions, which we accomplished by characterizing the corresponding region in amphioxus by identifying nine anchor genes and sequencing both the anchor genes and the regions that flank them (a total of 400 kb). Phylogenetic analysis of 31 genes (including the anchor genes) in these regions shows that duplications occurred after the divergence of cephalochordates and vertebrates but before the Gnathostomata radiation. The distribution of human and amphioxus orthologs in their respective genomes and the relationship between these distributions support the en bloc duplication events. Our analysis represents the first step towards demonstrating that the human ancestral genome has undergone polyploidization. Moreover, reconstruction of the pre-duplicated region indicates that one of the duplicated regions retains the ancestral organization.  相似文献   

2.
Complex SNP-related sequence variation in segmental genome duplications   总被引:23,自引:0,他引:23  
There is uncertainty about the true nature of predicted single-nucleotide polymorphisms (SNPs) in segmental duplications (duplicons) and whether these markers genuinely exist at increased density as indicated in public databases. We explored these issues by genotyping 157 predicted SNPs in duplicons and control regions in normal diploid genomes and fully homozygous complete hydatidiform moles. Our data identified many true SNPs in duplicon regions and few paralogous sequence variants. Twenty-eight percent of the polymorphic duplicon sequences we tested involved multisite variation, a new type of polymorphism representing the sum of the signals from many individual duplicon copies that vary in sequence content due to duplication, deletion or gene conversion. Multisite variations can masquerade as normal SNPs when genotyped. Given that duplicons comprise at least 5% of the genome and many are yet to be annotated in the genome draft, effective strategies to identify multisite variation must be established and deployed.  相似文献   

3.
4.
We identified 15 regions of >1 Mb in the human genome composed of large ancient local duplications corresponding to gene deserts. We detected these intrachromosomal duplications in mouse and dog but not in chicken; they present as patches of similarity as low as 60%. These findings suggest that some human gene deserts originated from duplications of segments lacking genes in a mammalian common ancestor.  相似文献   

5.
Detection of large-scale variation in the human genome   总被引:26,自引:0,他引:26  
We identified 255 loci across the human genome that contain genomic imbalances among unrelated individuals. Twenty-four variants are present in > 10% of the individuals that we examined. Half of these regions overlap with genes, and many coincide with segmental duplications or gaps in the human genome assembly. This previously unappreciated heterogeneity may underlie certain human phenotypic variation and susceptibility to disease and argues for a more dynamic human genome structure.  相似文献   

6.
The completed draft version of the human genome, comprised of multiple short contigs encompassing 85% or more of euchromatin, was announced in June of 2000 (ref. 1). The detailed findings of the sequencing consortium were reported several months later. The draft sequence has provided insight into global characteristics, such as the total number of genes and a more accurate definition of gene families. Also of importance are genome positional details such as local genome architecture, regional gene density and the location of transcribed units that are critical for disease gene identification. We carried out a series of mapping and computational experiments using a nonredundant collection of 925 expressed sequence tags (ESTs) and sections of the public draft genome sequence that were available at different timepoints between April 2000 and April 2001. We found discrepancies in both the reported coverage of the human genome and the accuracy of mapping of genomic clones, suggesting some limitations of the draft genome sequence in providing accurate positional information and detailed characterization of chromosomal subregions.  相似文献   

7.
8.
To test the hypothesis that the human genome project will uncover many genes not previously discovered by sequencing of expressed sequence tags (ESTs), we designed and produced a set of microarrays using probes based on open reading frames (ORFs) in 350 Mb of finished and draft human sequence. Our approach aims to identify all genes directly from genomic sequence by querying gene expression. We analysed genomic sequence with a suite of ORF prediction programs, selected approximately one ORF per gene, amplified the ORFs from genomic DNA and arrayed the amplicons onto treated glass slides. Of the first 10,000 arrayed ORFs, 31% are completely novel and 29% are similar, but not identical, to sequences in public databases. Approximately one-half of these are expressed in the tissues we queried by microarray. Subsequent verification by other techniques confirmed expression of several of the novel genes. Expressed sequence tags (ESTs) have yielded vast amounts of data, but our results indicate that many genes in the human genome will only be found by genomic sequencing.  相似文献   

9.
Human endogenous retroviruses (HERVs), which are remnants of past retroviral infections of the germline cells of our ancestors, make up as much as 8% of the human genome and may even outnumber genes. Most HERVs seem to have entered the genome between 10 and 50 million years ago, and they comprise over 200 distinct groups and subgroups. Although repeated sequence elements such as HERVs have the potential to lead to chromosomal rearrangement through homologous recombination between distant loci, evidence for the generality of this process is lacking. To gain insight into the expansion of these elements in the genome during the course of primate evolution, we have identified 23 new members of the HERV-K (HML-2) group, which is thought to contain the most recently active members. Here we show, by phylogenetic and sequence analysis, that at least 16% of these elements have undergone apparent rearrangements that may have resulted in large-scale deletions, duplications and chromosome reshuffling during the evolution of the human genome.  相似文献   

10.
11.
The Escherichia coli gene recQ was identified as a RecF recombination pathway gene. The gene SGS1, encoding the only RecQ-like DNA helicase in Saccharomyces cerevisiae, was identified by mutations that suppress the top3 slow-growth phenotype. Relatively little is known about the function of Sgs1p because single mutations in SGS1 do not generally cause strong phenotypes. Mutations in genes encoding RecQ-like DNA helicases such as the Bloom and Werner syndrome genes, BLM and WRN, have been suggested to cause increased genome instability. But the exact DNA metabolic defect that might underlie such genome instability has remained unclear. To better understand the cellular role of the RecQ-like DNA helicases, sgs1 mutations were analyzed for their effect on genome rearrangements. Mutations in SGS1 increased the rate of accumulating gross chromosomal rearrangements (GCRs), including translocations and deletions containing extended regions of imperfect homology at their breakpoints. sgs1 mutations also increased the rate of recombination between DNA sequences that had 91% sequence homology. Epistasis analysis showed that Sgs1p is redundant with DNA mismatch repair (MMR) for suppressing GCRs and for suppressing recombination between divergent DNA sequences. This suggests that defects in the suppression of rearrangements involving divergent, repeated sequences may underlie the genome instability seen in BLM and WRN patients and in cancer cases associated with defects in these genes.  相似文献   

12.
The approach to annotating a genome critically affects the number and accuracy of genes identified in the genome sequence. Genome annotation based on stringent gene identification is prone to underestimate the complement of genes encoded in a genome. In contrast, over-prediction of putative genes followed by exhaustive computational sequence, motif and structural homology search will find rarely expressed, possibly unique, new genes at the risk of including non-functional genes. We developed a two-stage approach that combines the merits of stringent genome annotation with the benefits of over-prediction. First we identify plausible genes regardless of matches with EST, cDNA or protein sequences from the organism (stage 1). In the second stage, proteins predicted from the plausible genes are compared at the protein level with EST, cDNA and protein sequences, and protein structures from other organisms (stage 2). Remote but biologically meaningful protein sequence or structure homologies provide supporting evidence for genuine genes. The method, applied to the Drosophila melanogaster genome, validated 1,042 novel candidate genes after filtering 19,410 plausible genes, of which 12,124 matched the original 13,601 annotated genes. This annotation strategy is applicable to genomes of all organisms, including human.  相似文献   

13.
A high-resolution survey of deletion polymorphism in the human genome   总被引:20,自引:0,他引:20  
Recent work has shown that copy number polymorphism is an important class of genetic variation in human genomes. Here we report a new method that uses SNP genotype data from parent-offspring trios to identify polymorphic deletions. We applied this method to data from the International HapMap Project to produce the first high-resolution population surveys of deletion polymorphism. Approximately 100 of these deletions have been experimentally validated using comparative genome hybridization on tiling-resolution oligonucleotide microarrays. Our analysis identifies a total of 586 distinct regions that harbor deletion polymorphisms in one or more of the families. Notably, we estimate that typical individuals are hemizygous for roughly 30-50 deletions larger than 5 kb, totaling around 550-750 kb of euchromatic sequence across their genomes. The detected deletions span a total of 267 known and predicted genes. Overall, however, the deleted regions are relatively gene-poor, consistent with the action of purifying selection against deletions. Deletion polymorphisms may well have an important role in the genetics of complex traits; however, they are not directly observed in most current gene mapping studies. Our new method will permit the identification of deletion polymorphisms in high-density SNP surveys of trio or other family data.  相似文献   

14.
Although the complete genome sequences of over 50 representative species have revealed the many duplicated genes in all three domains of life, the roles of gene duplication in organismal adaptation and biodiversity are poorly understood. In addition, the evolutionary forces behind the functional divergence of duplicated genes are often unknown, leading to disagreement on the relative importance of positive Darwinian selection versus relaxation of functional constraints in this process. The methodology of earlier studies relied largely on DNA sequence analysis but lacked functional assays of duplicated genes, frequently generating contentious results. Here we use both computational and experimental approaches to address these questions in a study of the pancreatic ribonuclease gene (RNASE1) and its duplicate gene (RNASE1B) in a leaf-eating colobine monkey, douc langur. We show that RNASE1B has evolved rapidly under positive selection for enhanced ribonucleolytic activity in an altered microenvironment, a response to increased demands for the enzyme for digesting bacterial RNA. At the same time, the ability to degrade double-stranded RNA, a non-digestive activity characteristic of primate RNASE1, has been lost in RNASE1B, indicating functional specialization and relaxation of purifying selection. Our findings demonstrate the contribution of gene duplication to organismal adaptation and show the power of combining sequence analysis and functional assays in delineating the molecular basis of adaptive evolution.  相似文献   

15.
16.
Aberrant methylation of CpG islands and genomic deletion are two predominant mechanisms of gene inactivation in tumorigenesis, but the extent to which they interact is largely unknown. The lack of an integrated approach to study these mechanisms has limited the understanding of tumor genomes and cancer genes. Restriction landmark genomic scanning (RLGS; ref. 1) is useful for global analysis of aberrant methylation of CpG islands, but has not been amenable to alignment with deletion maps because the identity of most RLGS fragments is unknown. Here, we determined the nucleotide sequence and exact chromosomal position of RLGS fragments throughout the genome using the whole chromosome of origin of the fragments and in silico restriction digestion of the human genome sequence. To study the interaction of these gene-inactivation mechanisms in primary brain tumors, we integrated RLGS-based methylation analysis with high-resolution deletion maps from microarray-based comparative genomic hybridization (array CGH; ref. 3). Certain subsets of gene-associated CpG islands were preferentially affected by convergent methylation and deletion, including genes that exhibit tumor-suppressor activity, such as CISH1 (encoding SOCS1; ref. 4), as well as genes such as COE3 that have been missed by traditional non-integrated approaches. Our results show that most aberrant methylation events are focal and independent of deletions, and the rare convergence of these mechanisms can pinpoint biallelic gene inactivation without the use of positional cloning.  相似文献   

17.
Substantial efforts are focused on identifying single-nucleotide polymorphisms (SNPs) throughout the human genome, particularly in coding regions (cSNPs), for both linkage disequilibrium and association studies. Less attention, however, has been directed to the clarification of evolutionary processes that are responsible for the variability in nucleotide diversity among different regions of the genome. We report here the population sequence diversity of genomic segments within a 450-kb cluster of olfactory receptor (OR) genes on human chromosome 17. We found a dichotomy in the pattern of nucleotide diversity between OR pseudogenes and introns on the one hand and the closely interspersed intact genes on the other. We suggest that weak positive selection is responsible for the observed patterns of genetic variation. This is inferred from a lower ratio of polymorphism to divergence in genes compared with pseudogenes or introns, high non-synonymous substitution rates in OR genes, and a small but significant overall reduction in variability in the entire OR gene cluster compared with other genomic regions. The dichotomy among functionally different segments within a short genomic distance requires high recombination rates within this OR cluster. Our work demonstrates the impact of weak positive selection on human nucleotide diversity, and has implications for the evolution of the olfactory repertoire.  相似文献   

18.
19.
The yak genome and adaptation to life at high altitude   总被引:8,自引:0,他引:8  
Domestic yaks (Bos grunniens) provide meat and other necessities for Tibetans living at high altitude on the Qinghai-Tibetan Plateau and in adjacent regions. Comparison between yak and the closely related low-altitude cattle (Bos taurus) is informative in studying animal adaptation to high altitude. Here, we present the draft genome sequence of a female domestic yak generated using Illumina-based technology at 65-fold coverage. Genomic comparisons between yak and cattle identify an expansion in yak of gene families related to sensory perception and energy metabolism, as well as an enrichment of protein domains involved in sensing the extracellular environment and hypoxic stress. Positively selected and rapidly evolving genes in the yak lineage are also found to be significantly enriched in functional categories and pathways related to hypoxia and nutrition metabolism. These findings may have important implications for understanding adaptation to high altitude in other animal species and for hypoxia-related diseases in humans.  相似文献   

20.
The genome of the mesopolyploid crop species Brassica rapa   总被引:21,自引:0,他引:21  
We report the annotation and analysis of the draft genome sequence of Brassica rapa accession Chiifu-401-42, a Chinese cabbage. We modeled 41,174 protein coding genes in the B. rapa genome, which has undergone genome triplication. We used Arabidopsis thaliana as an outgroup for investigating the consequences of genome triplication, such as structural and functional evolution. The extent of gene loss (fractionation) among triplicated genome segments varies, with one of the three copies consistently retaining a disproportionately large fraction of the genes expected to have been present in its ancestor. Variation in the number of members of gene families present in the genome may contribute to the remarkable morphological plasticity of Brassica species. The B. rapa genome sequence provides an important resource for studying the evolution of polyploid genomes and underpins the genetic improvement of Brassica oil and vegetable crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号